
 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

manuscript

A one-point boundary condition for the lattice Boltzmann method

Michael Junk∗ and Zhaoxia Yang†

FB Mathematik und Statistik, Universität Konstanz,

Fach D194, 78457 Konstanz, Germany

(Dated: September 29, 2006)

Abstract

We propose a correction to the bounce back boundary condition for lattice Boltzmann algorithms

which improves the accuracy of pressure from zero to first order and the accuracy of velocity from

first to second order. Compared to interpolation based corrections, our method has the advantage

of being completely local. In fact, methods using interpolation face difficulties at boundary points

where not enough neighboring nodes are available. We show that a combination with our method

offers a natural solution to this problem.
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I. INTRODUCTION

In contrast to conventional CFD methods which are based on a direct discretization of the

flow equations, the lattice Boltzmann approach [1, 2] uses an intrinsic connection between

kinetic theory and the continuum equations. While this trick allows to change the target

equation from a non-linear system to a semi-linear one, it has the disadvantage that the

simpler lattice Boltzmann equation involves more unknowns from which the macroscopic

fields of interest (like pressure and velocity) are obtained by averaging. In the interior of

the flow domain, the increased number of variables results in a larger memory requirement.

At boundaries of the domain where, for example, velocity Dirichlet conditions are to be

implemented, the disadvantage is more fundamental: one cannot prescribe directly the flow

velocity at boundary nodes but one has to set certain variables in the kinetic equation in

such a way that the average velocity satisfies the required conditions. Typically, the required

number of kinetic conditions exceeds the available conditions from the flow problems. This

indicates already that the kinetic conditions have to be chosen carefully in order to avoid the

appearance of extra conditions on the macroscopic level which would render the problem ill

posed (leading to an unwanted behavior on the grid scale like boundary layers, oscillations

etc.). In view of these remarks, it is not surprising that numerous articles can be found in

the literature which deal with the problem of specifying boundary conditions for the lattice

Boltzmann method.

One of the most basic algorithms which was already used in connection with the lattice

gas ancestor of the lattice Boltzmann method is the bounce back rule. While being a

quite robust method, it soon proved not to be accurate enough [3] and modifications have

been invented to achieve higher accuracy [4–17]. The idea to complement the given velocity

conditions with additional (more or less physically motivated) relations to obtain the kinetic

boundary equations has been adopted, for example, in [4, 14, 15, 17]. Another approach

consists in prescribing a suitably modified equilibrium distribution at the boundary [10, 16].

A quite popular modification of the bounce back rule is the BFL method given in [5].

Here, linear interpolation along lattice links is used to improve accuracy. A generalization

of this approach can be found in [9] where also higher order corrections and stability aspects

are considered. A common problem of all interpolation based methods is the requirement

of a sufficient number of neighboring nodes which may not always be available. Let us

2



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

consider, for example, the BFL condition which requires one additional neighbor in each

velocity direction which enters the domain. For the D2Q9 velocity model (velocities point

along the x and y axes and in the diagonal directions) we can face the situation depicted in

figure 1.

FIG. 1: Examples of boundary nodes where neighbors are not available for all incoming velocities.

Nodes of the computational domain are marked with filled circles. At corners one typically finds

opposing incoming directions, i.e. the neighbors of the boundary node in these directions are not in

the computational domain. The same problem can occur in the case of smooth, curved boundaries

as shown in the right diagram.

If the classical bounce back rule is used at the boundary nodes where the interpolation is

not applicable, the accuracy of the solution generally degrades everywhere in the domain (we

give examples in section IIIB). To maintain the order of the interpolation condition, it is

therefore mandatory to find accurate additional conditions for certain exceptional boundary

nodes.

Interesting candidates for this purpose are sufficiently accurate local boundary conditions

which do not require any neighboring information. As example, we mention the method

presented in [6, 7]. However, this algorithm also has some deficiencies. In the case shown on

the left of figure 1, the algorithm is actually inconsistent (see [18]) and the method is not

uniformly applicable to all choices of the relaxation parameter which determines the collision

operator in the lattice Boltzmann equation. Modifications which alleviate the latter problem

without removing it have been presented in [12, 13].

In this article we present a new local boundary algorithm which works without restriction

on the relaxation parameter and which can be shown to give a first order accurate pressure

and a second order accurate velocity [18]. The scheme is tested for several numerical ex-

amples and a comparison with the popular BFL method [5] shows a very similar behavior.

We also demonstrate that our method can be used in connection with BFL to remove the
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problems mentioned above.

II. SETUP OF THE LATTICE BOLTZMANN METHOD

We consider the incompressible Navier-Stokes equation on a domain Ω ⊂ R
d, d ∈ {2, 3},

with initial and Dirichlet boundary values. Our aim is to find numerical approximations of

the fields u : [0, T ] × Ω → R
d and p : [0, T ] × Ω → R, which satisfy

∇·u = 0, ∂tu+ u · ∇u+ ∇p = ν∇
2u+G, (1)

with u|t=0 = ψ and

u(t,x) = φ(t,x), t ∈ [0, T ], x ∈ ∂Ω (2)

where ψ,φ andG are given functions. To this end we consider a lattice Boltzmann algorithm

for the evolution of particle distribution functions f̂i(n, j) which specify the fraction of fluid

particles traveling with microscopic velocity ci at position xj = hj, j ∈ Z
d and time

tn = nh2, n ∈ N0. The parameter h is the non-dimensional grid spacing which is assumed

to be small compared to the (scaled) size of the domain. The actual Navier-Stokes fields are

recovered in the form of averages over the microscopic velocity.

ρ̂(n, j) =
∑

i

f̂i(n, j), û(n, j) =
∑

i

f̂i(n, j)ci. (3)

Here, û approximates the velocity field and the pressure is related to small deviations of the

total mass density ρ̂ from the constant value ρ0 = 1. The discrete evolution of the particles

consists of two phases, a transport step and a collision and forcing step. The latter has the

form

f̂ c
i (n, j) = f̂i(n, j) + Ci[f̂ ](n, j) + ĝi(n, j) (4)

where the so called collision operator is of relaxation type

Ci[f̂ ](n, j) =
1

τ

(

f eq
i (ρ̂(n, j), û(n, j)) − f̂i(n, j)

)

with τ = 1/2 + 3ν and ρ̂ and û defined through (3). The equilibrium distribution function

[19] is given by

f eq
i (ρ,u) =

[

ρ + 3u · ci +
9

2
(u · ci)

2 − 3

2
|u|2

]

f ∗
i
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The weight factors f ∗
i depend on the chosen velocity model. For the D2Q9 model which

is based on the velocity set {−1, 0, 1}2, the values are 4/9 for the zero velocity, 1/9 for

the axis parallel velocities of length one and 1/36 for the diagonal velocities of length
√

2.

The presented scheme also works in connection with the models D3QX, X ∈ {15, 19, 27}
(the weights and velocities can be found, for example, in [20]). The function ĝi models the

influence of the force term

ĝi(n, j) = 3h3f ∗
i ci ·G(tn,xj). (5)

We remark that the relation ∆t = h2 = ∆x2 between space and time step and the scaling

of the force term ĝ with h3 is necessary to obtain convergence towards the incompressible

Navier-Stokes system (1). These issues have been discussed in [21].

After collision where the original particle distribution function f̂i transforms into the

post-collisional state f̂ c
i , the particles simply move undisturbed with their velocities to the

neighboring lattice sites

f̂i(n + 1, j + ci) = f̂ c
i (n, j). (6)

This update rule is applied to all nodes xj ∈ Ω for which all neighbors xj +hci are contained

in Ω. At the remaining nodes (the so called boundary nodes with labels j ∈ Jbdr), a

modification is required because neighbors in certain directions are missing. We discuss

some standard choices and our new method below.

For a complete description, the initial distributions have to be prescribed at all grid

points. As in [16], we take

f̂i(0, j) = f eq
i (1 + 3h2p(0,xj), hψ(xj)) − 3h2τci(·∇)ci ·ψ(xj)f

∗
i (7)

where p(0, ·) is the initial Navier-Stokes pressure.

III. BOUNDARY CONDITIONS

A. The bounce back rule

The classical method to implement Dirichlet velocity conditions is the bounce back rule.

If node j ∈ Jbdr has a missing neighbor in direction −ci (i.e. if ci is an incoming direction),

the bounce back rule specifies the particle distribution f̂i according to

f̂i(n + 1, j) = f̂ c
i∗(n, j) + 6hf ∗

i ci · φ(tn,xji). (8)
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The velocity index i∗ is defined by ci∗ = −ci, and the boundary value φ is evaluated at the

boundary point xji = xj − hqjici ∈ ∂Ω where qji ∈ [0, 1) represents the distance to the

boundary along direction ci∗ = −ci as fraction of h|ci|.
A careful analysis shows that if the lattice Boltzmann algorithm presented in the previous

section is used in connection with condition (8), the resulting solution is, in general, a quite

inaccurate approximation of the Navier-Stokes fields. The pressure is inconsistent and the

error of velocity is proportional to h [18].

Only in some exceptional cases, for example when all boundary nodes are located half

a grid spacing away from the boundary, the accuracy is one order higher for both pressure

and velocity. However, it should be noted that the choice qji = 1/2 is only possible for a

very restricted class of flow geometries Ω.

To illustrate this behavior, we consider a 2D stationary linear flow on the unit square

Ω = (0, 1)2

u(x) = Ax, p(x) = −1

2
xTA2x, A =





4 1

1 −4



 . (9)

The required boundary and initial values are set to the corresponding values of the ex-

act solution and the numerical tests are carried out on a sequence of grids with grid size

h ∈ { 1

10
, 1

20
, 1

30
, 1

40
, 1

50
}. The termination time is T = 1. The relaxation time is computed

according to ν = 0.1 in (1) and the error between exact and numerical values is measured

with the maximum norm in space and time.

Figures 2 and 3 compare the performance of the bounce back rule in the case qji = 0 (all

boundary nodes are on ∂Ω) with the favorable case qji = 1/2 which can be used for this

simple set Ω. Note, in particular, that the pressure does not converge in the general case

qji 6= 1/2 so that better boundary schemes are required.

B. The BFL rule

An improvement of the bounce back rule has been proposed in [5]. The boundary con-

dition can be viewed as a correction of (8) in the case qji 6= 1/2. Denoting the right hand

side of (8) as f̂ b
i∗(n, j), the condition has the form

f̂i(n + 1, j) = f̂ b
i∗(n, j) + (1 − 2qji)∆

±
i (n, j)

6



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

−1.8 −1.6 −1.4 −1.2 −1
−6

−5

−4

−3

−2

log10 h

lo
g
1
0
(e

rr
or

)

FIG. 2: Logarithmic velocity error versus log10 h in the case of a 2D stationary linear flow with

qji = 0 (∗) and qji = 0.5 (◦).
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FIG. 3: Logarithmic pressure error versus log10 h in the case of a 2D stationary linear flow with

qji = 0 (∗) and qji = 0.5 (◦).

where

∆−
i (n, j) = f̂ c

i∗(n, j + ci) − f̂ c
i∗(n, j) qji ≤ 1/2

∆+

i (n, j) = f̂i(n + 1, j) − f̂ c
i (n, j) qji > 1/2

Note that the expression ∆−
i requires a neighbor in the incoming direction. If the neighbor

is missing (like in figure 1), the condition is undefined and usually replaced by the bounce

back rule (8). This choice, however, generally degrades the accuracy. To illustrate this

behavior, we consider the previous test case on a square and a circular geometry (reflecting

the problematic cases in figure 1). Figures 4 and 5 show that the BFL rule supplemented

with the bounce back algorithm inherits the low order of (8) even though it is only used at

very few boundary nodes. In contrast to this, a combination with the new local boundary
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condition POP1 presented in the next section yields first order pressure and second order

accurate velocity at all points which is a simple but efficient improvement.

It should be stressed, that the low order error is not located at the few isolated nodes

where the bounce back rule is used but appears everywhere in the domain. To illustrate this

behavior, we consider the linear flow (9) in the unit disk more carefully. In this case, the

BFL rule cannot be applied at the four isolated points which are extremal in the coordinate

directions. We measure the numerical error within concentric rings R1, R3, R5, where

Ri = {(x, y) : r2

i−1 < x2 + y2 < r2

i },

r0 = 0, r1 = 0.5, r2 = 0.7, r3 = 0.8, r4 = 0.9, r5 = 1.0

and determine its maximal value during the simulation for each subdomain on several grids.

In figures 6 and 7, the pressure and velocity errors are shown. One can clearly see that

the error is generally lower for subdomains which are futher away from the boundary. In

contrast to the results obtained with our method employed at the four isolated points, the

bounce back results are less accurate in every ring and the convergence order is generally

lower (the orders for velocity and pressure are reported in table I).

TABLE I: Comparison of numerical convergence orders of velocity/pressure for a linear flow in

a disk with different treatment of the isolated points where BFL cannot be used. The error is

measured on concentric rings R1, R3, R5.

ring bounce back POP1

R1 1.7730/0.7665 2.4293/1.1231

R3 1.6968/0.6496 2.2933/1.6396

R5 0.6752/0.1459 2.0008/1.0246

C. The new local boundary condition

The method proposed here is also a correction of the bounce back rule but, in contrast

to the BFL approach, it is not link-based. To describe the algorithm at a boundary node

xj we first introduce the matrix Kik

Kik = −3

2
(3 − 6qji)f

∗
i

(

(ci · ck)
2 − |ci|2/3 − c2

iα(|ck|2 − 1)
)
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FIG. 4: Logarithmic velocity error versus log10 h in the case of a 2D stationary linear flow with

different boundary treatments at the points where neighbors in incoming directions are missing.

For circular geometry, ◦ and ∗ denote the results with bounce back rule (◦) and POP1 (∗). For

the flow in a square, the bounce back result is ⋄ and POP1 yields ▽.
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FIG. 5: Logarithmic pressure error versus log10 h in the case of a 2D stationary linear flow with

different boundary treatments at the points where neighbors in incoming directions are missing.

For circular geometry, ◦ and ∗ denote the results with bounce back rule (◦) and POP1 ( ∗). For

the flow in a square, the bounce back result is ⋄ and POP1 yields ▽.

which has to be evaluated for all pairs (i, k) of velocity indices at each boundary node. The

coordinate index α ∈ {1, . . . , d} can be chosen arbitrarily (we take α = d). After selecting

the parameter θ ∈ [0, 1] which controls the amount of implicitness of the resulting method

POPθ, we set up the matrix Lik = δik + θKik but this time only for indices i, k which refer

to incoming velocity directions at xj (these indices are collected in the set V ). Then, the

inverse of the small matrix Lik has to be determined. This requirement restricts θ not to be
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FIG. 6: (Color online) Logarithmic velocity error versus log10 h in the case of a 2D stationary

linear flow in a disk with different boundary treatments at the points where neighbors in incoming

directions are missing. The dashed lines denote the results with bounce back rule, solid lines

stand for the results with POP1. The symbols ◦, ∗,▽ refer to errors in the concentric subregions

R1, R3, R5.
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FIG. 7: (Color online) Logarithmic pressure error versus log10 h in the case of a 2D stationary

linear flow in a disk with different boundary treatments at the points where neighbors in incoming

directions are missing. The dashed lines denote the results with bounce back rule, solid lines

stand for the results with POP1. The symbols ◦, ∗,▽ refer to errors in the concentric subregions

R1, R3, R5.

the negative inverse of an eigenvalue of the submatrix Kik, i, k ∈ V . Otherwise, θ can be

chosen arbitrarily and, in principle, a different choice is possible for every boundary node.

Note that θ = 0 turns Lik into the identity matrix so that no inversion is necessary in that

case (explicit method).
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FIG. 8: Logarithmic velocity error versus log10 h in the case of a 3D stationary linear flow. Solid,

dashed and dotted lines correspond to the models D3Q15, D3Q19 and D3Q27 respectively. ◦, ⋄

and + denote the results of explicit θ = 0, mixed θ = 0.7 and implicit θ = 1 schemes.

For non-moving boundaries, all steps described so far need to be worked out only once

during preprocessing. For the time iteration, the following steps are required. Denoting the

right hand side of (8) again by f b
i∗(n, j) and observing that, after the lattice Boltzmann

transport step, the densities for the outgoing directions f̂k(n+1, j), k 6∈ V are available, we

compute for all i ∈ V

ri(n, j) =
∑

k 6∈V

θKikf̂k(n + 1, j) +
∑

k

Kikσ̂k(n, j)

Then we determine the required incoming distributions f̂k(n + 1, j), k ∈ V by solving the

linear system (here the inverse of the small matrix Lik is needed)

∑

k∈V

Likf̂k(n + 1, j) = f b
i∗(n, j) − ri(n, j), i ∈ V (10)

Note that (10) reduces to the bounce back rule if qji = 1/2 because Kik = 0 in that case so

that also ri = 0 and Lik = δik.

We remark that the boundary condition is also applicable in the case of lattice Boltzmann

methods with more general collision operators (e.g. multi relaxation time models). In fact,

the specific collision model enters only indirectly into (10) through f b
i∗(n, j) which contains

the post-collisional state (4).
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FIG. 9: Logarithmic pressure error versus log10 h in the case of a 3D stationary linear flow. Solid,

dashed and dotted lines correspond to the models D3Q15, D3Q19 and D3Q27 respectively. ◦, ⋄

and + denote the results of explicit θ = 0, mixed θ = 0.7 and implicit θ = 1 schemes.

IV. NUMERICAL TEST OF THE NEW METHOD

In this section the proposed one-point method (10) is carefully tested in two respects

which are of practical interest: the accuracy and the applicability in the case of curved

boundaries. Moreover, we also report some experiments concerning mass conservation. Gen-

erally it is observed that implicit versions of the algorithm are more stable than the explicit

one.

Three models which have analytical solutions are used here, a stationary linear flow,

a non-stationary linear flow, and a 2D circular flow. All models are used to assess the

accuracy and convergence of the proposed new boundary treatment. The 2D circular flow

has been chosen to test the applicability in the case of curved boundaries. The grid size

is h ∈ {1/10, 1/20, 1/30, 1/40, 1/50}. The parameter θ is chosen from the set {0.0, 0.7, 1.0}
and The relaxation time is again set corresponding to ν = 0.1 in (1).

A. A family of 3D linear flows

The velocity and pressure of the 3D linear flows are described as

u(t,x) = α(t)Ax, p(t,x) = −1

2
α(t)xTA2x,

12
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where

A =
1

200











10 5 2

5 10 4

2 4 −20











,

α(t) is a function of time t. It is easy to validate that the fields u and p satisfy the Navier-

Stokes equations (1) in the entire space with a body force defined by

G(t,x) = α′(t)Ax+ α(t)(α(t) − 1)A2x. (11)

The numerical tests for this kind of linear flow will be restricted to the unit cube Ω = [0, 1]3

as computational region and the known values of u are prescribed at the boundary ∂Ω.

Because of the simple geometrical structure, the parameters qji are determined by three

values qi, where h(q1, q2, q3) are the coordinates of the node closest to the origin. In this

paper qi are chosen equally and the common value is denoted q, with values {0, 0.4} in our

test cases.

1. Stationary linear flow

Under the condition that α(t) is a constant, for example α(t) = 1, the flow is stationary

and the corresponding body forceG vanishes. We compute the error of the various methods

by comparing the approximate solution with the exact one in the maximum norm over

[0, T ]×Ω with T = 1. Figure 8 is the logarithmic error plot for velocity. The corresponding

results for the pressure is given in figure 9. Table II displays all the slopes of the error lines

in Figures 8 and 9. Those of the velocity are around 1.9 and the pressure curves show slopes

around 0.9. These numerical results demonstrate that the new boundary scheme produces

a second order accurate velocity and at least a first order accurate pressure, which supports

the analytical considerations in [18]. Observing the error size in figure 8 and figure 9, both

show that all variants of the method have a very similar performance, and none of the models

D3Q15, D3Q19 and D3Q27 produces prominently smaller errors than the others.

2. Non-stationary linear flow

In this case α(t) varies with time t, for example α(t) = t2. This flow is initially at rest

and driven by an increasingly stronger body force. The termination time is set to T = 0.1.

13
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TABLE II: Numerical convergence orders of velocity/pressure for a stationary linear flow.

θ q D3Q15 D3Q19 D3Q27

0 0 1.846/0.698 1.952/0.847 1.957/0.872

0 0.4 1.814/0.819 1.791/0.875 1.782/0.912

0.7 0 1.875/0.744 1.953/0.909 1.959/0.940

0.7 0.4 1.811/0.818 1.794/0.875 1.786/0.911

1 0 L irregular 1.953/0.926 1.959/0.960

1 0.4 1.807/0.818 1.795/0.874 1.787/0.911

Figure 10 and 11 show the error plots of velocity and pressure versus the grid size. While

the error in velocity is essentially identical for all the methods, the D3Q27 model gives

slightly better results than the other two models. Table III displays all the slopes of the

error lines in figures 10 and 11. These numerical results demonstrate that the new boundary

TABLE III: Numerical convergence orders for velocity/pressure in the case of a non-stationary

linear 3D flow.

θ q D3Q15 D3Q19 D3Q27

0 0 1.991/1.589 1.989/1.585 2.000/1.619

0 0.4 1.940/1.589 1.940/1.593 1.957/1.546

0.7 0 1.994/1.681 1.985/1.570 1.992/1.606

0.7 0.4 1.940/1.681 1.941/1.593 1.957/1.549

1 0 L irregular 1.991/1.564 1.999/1.599

1 0.4 1.958/1.460 1.941/1.594 1.957/1.550

scheme produces a second order accurate velocity and at least a first order accurate pressure.

B. Flow inside a circular cylinder

We consider the so-called impulsively started circular flow which has been described, for

example, in [5]. The radius of the infinitely long circular cylinder is taken as R = 1. Using

dimensional reduction, we are led to a 2D Navier-Stokes problem posed on the unit disk Ω.

The exact angular velocity uθ(t, r) is given in [5] based on an infinite series involving Bessel

14



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

−1.8 −1.6 −1.4 −1.2 −1

−5

−4.5

−4

log10 h

lo
g
1
0
(e

rr
or

)
FIG. 10: (Color online) Logarithmic velocity error versus log10 h for non-stationary linear flow.

Solid, dashed and dotted lines correspond to the models D3Q15, D3Q19 and D3Q27 respectively.

◦, ⋄ and + denote the results of explicit θ = 0, mixed θ = 0.7 and implicit θ = 1 schemes.
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FIG. 11: (Color online) Logarithmic pressure error versus log10 h for non-stationary linear flow.

Solid, dashed and dotted lines correspond to the models D3Q15, D3Q19 and D3Q27 respectively.

◦, ⋄ and + denote the results of explicit θ = 0, mixed θ = 0.7 and implicit θ = 1 schemes.

functions of order zero and one. In addition, the pressure p(t, r) is centrally symmetric (the

origin is the center) and appears as an integration of the angular velocity,

p(t, r) =

∫ r

0

1

r
u2

θdr.

Obtaining the exact velocity and pressure for this model, obviously involves numerical in-

tegration and an approximation of uθ. For the former we take a second order accurate

integration method, the latter is calculated by taking the sum of the first 50 terms in the

series only.

Since the boundary curve now is a circle, the distance between boundary nodes and

15



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

−1.8 −1.6 −1.4 −1.2 −1
−5

−4.5

−4

−3.5

log10 h

lo
g
1
0
(e

rr
or

)
FIG. 12: Logarithmic velocity error versus log10 h for a 2D circular flow. ◦, ⋄ and + denote the

results of implicit θ = 1, mixed θ = 0.7 schemes and the BFL method, the best fit slopes are 1.701,

1.889 and 2.005 respectively.
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FIG. 13: Logarithmic pressure error versus log10 h for a 2D circular flow. ◦, ⋄ and + denote the

results of implicit θ = 1, mixed θ = 0.7 schemes and the BFL method, the best fit slopes are 1.189,

1.159 and 0.928 respectively.

boundary varies arbitrarily between 0 and h, i.e., qji ∈ [0, 1). In order to concentrate on

the errors caused by the proposed boundary schemes, we want to avoid initial errors due to

the non-smooth abrupt start of the cylinder (abrupt start means u = 0 in the domain but

uθ = 1 along the boundary). This can be achieved, for example, by starting at time t = 0.5

instead of t = 0. To check the accuracy, the termination time is set to T = 0.6. In the

explicit case θ = 0, the scheme is not stable. Figure 12 and 13 show the error of velocity

and pressure versus the grid size for implicit and mixed boundary conditions and the BFL

method. It demonstrates the second order accuracy of velocity and first order accuracy of

pressure. More importantly, these numerical results confirm that the proposed boundary
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FIG. 14: Absolute difference between total mass and its initial value over time. Implicit scheme

θ = 1 (⋆), mixed scheme θ = 0.7 (⋄), BFL scheme (◦).

scheme works very well in connection with curved boundaries if θ > 0.

Since the total mass in Ω is a conserved quantity, it is desirable to check to which extent

the new proposed boundary conditions guarantee conservation. To this end, we calculate

and study the deviation of the arithmetic density average (which is a natural approximation

of the total mass) from its initial value for various grids.

Figure 14 shows the deviation of total mass from the its initial value over time for the

implict, mixed, and BFL scheme on a lattices with grid size h = 1/40. We observe that the

mass conservation is violated slightly and, in this case, the new method performs somewhat

better than the BFL rule. With decreasing grid size, the maximal deviation of the total

mass also decreases as depicted in figure 15 where the mass error is computed on grids with

h ∈ {1/10, 1/20, 1/40}.

V. CONCLUSION

We have introduced a family of LB boundary algorithms to solve Dirichlet boundary value

problems for the instationary, incompressible Navier-Stokes equation. The accuracy and the

stability behavior of our method is similar to the BFL schemes presented in [5]. However

the new scheme has the advantage of being completely local which also distinguishes it from

the multi-reflection condition in [9]. In contrast to the local condition introduced in [8], our

method does not require derivatives of the Dirichlet data along the boundary and it works

exactly in the same way for curved and flat boundaries. However, the two methods are
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FIG. 15: Grid dependence of the total mass error. Implicit scheme θ = 1 (⋆), mixed scheme θ = 0.7

(⋄), BFL scheme (◦).

similar in the sense that for every boundary node a small linear system has to be set up

and inverted in a preprocessing step. We have shown that our method can also be used to

fix the degradation of interpolation based schemes which results from boundary points with

missing nodes in incoming directions.
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