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A Kinetic Approach to Hyperbolic Systems

and the Role of Higher Order Entropies

Michael Junk

Abstract. The reformulation of conservation laws in terms of kinetic equa-
tions, which parallels the relation between Boltzmann and Euler equation, has
been successfully used in the form of kinetic schemes. The central problem
in the kinetic approach is the construction of suitable equilibrium distribu-
tions which generalize the Maxwellian in the Boltzmann–Euler case. Here, we
present a solution to this problem which allows the construction of equilib-
rium distributions for general systems of hyperbolic conservation laws. The
approach leads to the notion of higher order entropies and generalizes several
approaches discussed by other authors.

1. Introduction

In order to explain the kinetic approach, we consider a simple advection process
which can be described by the scalar, linear conservation law

∂u

∂t
+ a

∂u

∂x
= 0, u(0, x) = u0(x), x ∈ R, t ≥ 0 (1)

where a ∈ R is a given constant (the advection velocity). It is well known that the
solution of (1) is

u(t, x) = u0(x− at). (2)

An alternative model is given by a kinetic approach: a continuum of particles
is distributed in such a way that the initial density u0 is recovered. To obtain
the correct evolution, each particle is given the velocity a and free movement is
assumed. If the density of particles with velocity v at position x and time t is
described by the function f(t, x, v), the evolution is given by the kinetic transport

process
∂f

∂t
+ v

∂f

∂x
= 0, f(0, x, v) = u0(x)δ(v − a) (3)

The relation between the conservation law (1) and the kinetic equation (3) is
obtained through the initial value in the kinetic model which is based on the con-

straint function µ(u; v) = uδ(v−a). We will see below, that for more general scalar
conservation laws, other constraint functions have to be used and if discontinu-
ities occur in the solution, the kinetic model has to be modified by a source term.
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However, the relation between the solution of the kinetic model and the one of
the conservation law is generally obtained in the following way (the symbol 〈·, ·〉v
denotes v–integration)

u(t, x) = 〈f(t, x, v)〉v , f(t, x, v) = µ(u(t, x); v)

For the advection equation this is easily checked because the solution of (3) is
f(t, x, v) = u0(x− vt)δ(v−a), so that 〈f(t, x, v), 1〉v = u0(x−at) which is (2). On
the other hand, µ(u(t, x); v) = u0(x− at)δ(v − a) = u0(x− vt)δ(v − a).

Let us now turn to the Burgers equation

∂u

∂t
+

∂

∂x

(

1

2
u2

)

= 0, u(0, x) = u0(x), x ∈ R (4)

as a more complicated example. According to [13], the problem to find the entropy
solution of (4) can be restated as finding a solution f(t, x, v) of the transport
equation

∂f

∂t
+ v

∂f

∂x
=
∂m

∂v
in D ′(R+ × R × R) (5)

where m is a non–negative bounded measure which is chosen to ensure a particular
v–dependence of f

f(t, x, v) = µ(u(t, x); v) for some function u(t, x). (6)

Here, µ is the difference of two Heaviside functions µ(u; v) = H(v) − H(v − u).
The relation between (4) and (5), (6) is as follows (for details see [13]): if u is
the entropy solution of (4) then f(t, x, v) = µ(u(t, x); v) solves (5) for some non–
negative bounded measure m. Conversely, if f,m solve (5), (6) then the v–average
u = 〈f, 1〉v of f is the entropy solution of the Burgers equation.

The measurem which serves as a Lagrange multiplier to ensure the constraint
f = µ has the interesting property that its (t, x) support is concentrated on the
points of discontinuity of u. In other words, for smooth solutions of the conservation
law, f automatically keeps the form µ and satisfies the evolution of free transport

∂f

∂t
+ v

∂f

∂x
= 0, f(0, x, v) = µ(u0(x); v) (7)

exactly as in our initial example. It is remarkable that the nonlinear behavior of the
solution to (4) can be described by an extremely simple, linear particle dynamics.
On the other hand, it is also clear that the simple free streaming leads to wrong
results as soon as shocks appear in the solution. In fact, shocks are naturally
connected to a deceleration of the flow (e.g. in the Burgers equation the shock
speed is the average of the speeds to the left and to the right of the discontinuity)
but this effect can not be captured with a model where the particles are not subject
to any force. Hence, the “collision” term ∂vm is required to replace, for example,
high particle velocities by the shock velocity. To illustrate these ideas, we calculate
ũ = 〈f, 1〉v based on the solution of (7)

ũ(t, x) =
〈

µ(u0(x− vt); v), 1
〉

v
(8)
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for different t ≥ 0 with the initial value depicted in figure 1. Up to the time of the
shock, (8) yields the correct solution (see figures 2 and 3). At later times however, a
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Figure 1. The ini-
tial value u0
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Figure 2. u(0.5, x)
and ũ(0.5, x)

rarefaction takes place which is no longer in accordance with the entropy solution of
the Burgers equation and which results from the assumption of free flow underlying
(8) (see figures 4, 5). Neglecting the source term ∂vm in (5) leads to a deviation of
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Figure 3. u(1, x)
and ũ(1, x)
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Figure 4. u(2, x)
and ũ(2, x)

the free flow solution v 7→ µ(u0(x− tv), v) from the form of the constraint function
v 7→ µ(ū; v). In fact, at time t = 4 the free flow solution at x = 3/2 is given in fig.
6. Note that it is still the difference of two Heaviside functions but no longer in
the form H(v) −H(v − 1/2) as for the exact solution. On the other hand, shortly
after the shock time, the deviation of (8) from u(t, x) is only small, i.e. we formally
have first order consistency in time

u(∆t, x) = 〈f(∆t, x, v), 1〉v + O(∆t2)

where u solves (4) and f is the solution of the free flow equation (7). This obser-
vation can be used to derive approximate solutions of the conservation law and it
is the basis of kinetic schemes.
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Figure 5. u(4, x)
and ũ(4, x)
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2. Kinetic Schemes

Let us assume that a hyperbolic system of m equations in d dimensions

∂

∂t
U +

∂

∂xj

F j(U ) = 0, U (0,x) = U 0(x). (9)

is related to a system of m independent free flow equations

∂

∂t
f + vj

∂

∂xj

f = 0, f (0,x,v) = µ(U 0(x); v) (10)

in such a way that

U (∆t,x) = 〈f (∆t,x,v), 1〉v + O(∆tn+1) (11)

for some n ∈ N. (In the previous section, we have presented such relations for the
case m = 1.) Then, kinetic schemes for (9) are generally constructed as follows:

a) Instead of (9), the linear equation (10) is discretized in t,x (finite dif-
ference, finite volume, finite element, etc.). The initial value for (10) at
time step n+ 1 is based on the approximate value Un resulting from the
previous step.

b) The discrete evolution obtained in (a) is integrated over v to get a scheme
for the non–linear, hyperbolic problem (9).

Schemes following this approach have been presented by several authors [1, 2, 4,
5, 6, 7, 12, 15, 16].

3. The central question

In order to apply the kinetic approach to a given hyperbolic system like (9), the key
problem is to find a suitable constraint function µ which relates the system to the
kinetic model. In the following, we are trying to construct µ in such a way that the
order of consistency between solutions of (9) and (10) becomes maximal. In other
words, we try to maximize n in the relation (11). In order to use Taylor expansion
arguments, we restrict ourselves to smooth initial conditions and corresponding
smooth solutions of the hyperbolic system. Note, however, that this restriction
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is only taken for the construction of µ. The obtained constraint function can, of
course, be used in a kinetic scheme to approximate weak solutions of the hyperbolic
system.

3.1. Assumptions on the hyperbolic system

We consider general hyperbolic problems

∂

∂t
U (t,x) +

∂

∂xj

F j(U (t,x)) = 0, U (0,x) = U 0(x) (12)

with x ∈ R
d and assume that the unknowns U = (U1, . . . , Um)T are contained

in a connected open set S ⊂ R
m (the state space) with F j : S 7→ R

m being C1–
functions. In the generic case d > 1 and m > 1, we also assume that S is simply
connected. Note that (12) is hyperbolic if all linear combinations ξjA

j(U ) of the

Jacobian matrices Aj(U ) = ∇F j(U ) of the fluxes have only real eigenvalues for
all ξ ∈ R

d and all U ∈ S.
Concerning classical solutions of (12), we consider the spaces J k

T of S–valued
functions U ∈ Ck([−T, T ]×R

d,S) which have uniformly bounded derivatives and
for which U ([−T, T ] × R

d) is a compact subset of S. Using this notation, our
assumption can be stated in the following way: for any U 0 ∈ J ∞

0 there exists
T > 0 such that (12) admits a classical solution U ∈ J 1

T .

3.2. Formulation of the problem

Given a hyperbolic system like (9), the central problem in the kinetic approach is
the construction of a constraint function µ such that equation i of the system

∂Ui

∂t
+

∂

∂xj

F j
i (U ) = 0, Ui(0,x) = U0

i (x) (13)

is related to the kinetic equation

∂fi

∂t
+ vj

∂fi

∂xj

= 0, fi(0,x,v) = µi(U
0(x); v).

Since the equations for fi are decoupled, we can avoid dealing with systems by
focusing on each equation (13) at a time. More generally, we can use the observation

that Ui = η(U ) is a linear entropy for (12) with fluxes φj(U ) = F j
i (U ). The

original problem is thus transformed into the question, how to relate an entropy
conservation law for (12)

∂

∂t
η(U ) +

∂

∂xj

φj(U ) = 0 (14)

to the kinetic problem

∂f

∂t
+ vj

∂f

∂xj

= 0, f(0,x,v) = µη(U 0(x); v)

Although this generalization is mainly a technical trick which reduces the original
problem to m scalar ones, it will also give insight into the relation between entropy
conservation laws and the kinetic approach.
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Since the solution of (14) is given by

η̃(t,x) =
〈

µη(U 0(x − tv); v)
〉

v
(15)

our aim is now to find µη such that

η(U (∆t,x)) − η̃(∆t,x) = O(∆tn+1) (16)

with the order of consistency as large as possible.

In order to give (15) a precise mathematical meaning, we have to require
some properties of µη. For fixed U ∈ S, we assume that µη(U ) is a compactly
supported distribution (we also write µη(U ; v) to indicate that µη(U ) acts in
the v–variable). Introducing as usual E (Rd) as the space of C∞ functions with a
topology generated by the semi-norms

qn(ϕ) = max
|α|≤n

sup
|v|≤n

|∇αϕ(v)|, ϕ ∈ E (Rd), n ∈ N,

(we use standard multi–index notation) the compactly supported distributions
E ′(Rd) are the continuous linear functionals on E . Using this notation, we require
that U 7→ µη(U ) is a continuous mapping with values in E ′ which has some locally
uniform properties.

Definition 3.1. By K we denote the set of all continuous functions µ : S 7→ E ′(Rd)
which satisfy for any compact K ⊂ S and any ϕ ∈ E (Rd)

| 〈µ(U ), ϕ〉 | ≤ CKqNK
(ϕ), ∀U ∈ K

where NK and CK depend on µ and K. The subset K 1 ⊂ K contains all µ for

which there exists a continuous mapping ∇µ : S 7→ [E ′(Rd)]m such that

∇〈µ(U ), ϕ〉 = 〈∇µ(U ), ϕ〉 ∀ϕ ∈ E (Rd).

In [11], it is shown that for U 0 ∈ J 0
0 , equation (15) defines a mapping

η ∈ C∞(R,S ′(Rd)) where S ′(Rd) denotes the set of tempered distributions. On
the other hand, if U ∈ J 1

T , the function x 7→ η(U (t,x)) is uniformly bounded for
every t ∈ [−T, T ] so that it can also be viewed as a tempered distribution. A more
precise formulation of (16) is based on the following

Definition 3.2. Let η ∈ C1(S,R), µ ∈ K and n ∈ N0. The constraint function µ is

called n–consistent to η if for all U 0 ∈ J ∞
0 with corresponding solution U ∈ J 1

T

of (12), relation (16) holds in S ′(Rd), i.e. for all ψ ∈ S (Rd)

〈

η(U (∆t,x)) −
〈

µ(U 0(x − v∆t); v), 1
〉

v
, ψ(x)

〉

x
= O(∆tn+1).

The central problem can now be stated as follows: for a given hyperbolic
system (12) and some η ∈ C1(S,R) find µ ∈ K which is n–consistent to η with n
as large as possible.
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3.3. The result

The answer to the questions raised in the previous section is intimately related
to the notion of higher order entropies. To introduce this concept, we need n–fold
symmetric products Aα,|α| = n of the flux Jacobians A1, . . . Ad which are defined
through the relation

1

n!
(ξjA

j)n =
∑

|α|=n

1

α!
ξαAα. (17)

For example, if ei are the standard unit vectors, then A0 = I , Aei = Ai, and
Aei+ej = 1

2
(AiAj +AjAi).

Definition 3.3. A function η ∈ C1(S,R) is called entropy of order n ∈ N0 for the

system (12) if the continuous mappings

U 7→ ∇Tη(U )Aα(U )Ak(U ), 0 ≤ |α| < n, k = 1, . . . , d

have primitives.

We remark that entropies of order zero are just smooth functions on S (due
to an empty assumption) and that usual entropies for (12) are recovered as first
order entropies (the required primitives are then called entropy fluxes).

Theorem 3.4. Assume the system (12) satisfies the conditions in Section 3.1 and

η ∈ C1(S,R). Then, there exists an n–consistent constraint function µ ∈ K for η
if and only if η is an entropy of order n.

The required details for the proof can be found in [9, 11]. Here, we just
mention that the sufficiency part of the proof is constructive. In fact, if η is an
entropy of order n, we introduce the constraint function

µη(Ū ; v) =

∫ Ū

U∗

∇Tη(U )E(U ; v) dU + η(U ∗)δ(v)

E(U ; v) = F−1

ξ exp(−iξj∇F j(U ))
∣

∣

∣

v

(18)

where F−1

ξ denotes the inverse Fourier transform with respect to ξ, and the line

integral is carried out along a curve in the state space connecting Ū with a fixed
point U ∗ ∈ S. In this construction, the assumption of hyperbolicity is crucial to
ensure that E(U ; v) is a compactly supported distribution in v (the argument is
based on the Paley–Wiener theorem). It can be shown that the ansatz (18) auto-
matically leads to maximal order of consistency in the sense specified in Definition
3.2. A practical application to the 1D Euler system will be presented in the final
section, other examples can be found in [9, 10]. It turns out that µη given by (18)
is equivalent to the constraint functions of several kinetic approaches discussed in
the literature.

Coming back to the problem of constructing kinetic schemes for a system of
hyperbolic equations, we conclude that the crucial relation (11) can be obtained
for general systems of hyperbolic equations at least with n = 1. The reason is
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that the linear functions ηi(U ) = Ui are first order entropies (with fluxes F j
i (U ))

and hence µi = µηi
constructed with (18) are one–consistent. Hence, the vector

constraint function µ = (µ1, . . . , µm)T gives rise to (11) with n = 1. In this way,
one can also deduce the constraint functions of our two initial examples. For the
advection equation, we observe that the inverse Fourier transform of exp(−iξa)
is E(u; v) = δ(v − a) so that, in connection with the linear entropy η(u) = u,
integration of η′E from 0 to u yields µ(u; v) = uδ(v−a). Similarly, for the Burgers
equation, E(u; v) = δ(v−u) and the integration leads to µ(u; v) = H(v)−H(v−u)
since −H(v − u) is the u–primitive of δ(v − u).

3.4. Entropies of infinite order

A special situation occurs if all functions ∇TηAαAk have primitives, i.e. if η is of
infinite order. It implies that for smooth solutions of the hyperbolic system, the
entropy η(U (t,x)) coincides with the approximation obtained through the kinetic
approach. To state the result more precisely, we introduce the notion of kinetic
representations.

Definition 3.5. Let η ∈ C1(S,R) and µ ∈ K . We call µ a kinetic representation of

η if for all U 0 ∈ J ∞
0 with corresponding solution U ∈ J 1

T of (12), the equality

η(U (t,x)) =
〈

µ(U 0(x − tv); v), 1
〉

v

holds in S ′(Rd) for all t ∈ [−T, T ].

Theorem 3.6. Assume the system (12) satisfies the conditions in Section 3.1 and

η ∈ C1(S,R). Then, η has a kinetic representation if and only if η is of infinite

order.

The sufficiency part of Theorem 3.6 also yields a complete characterization
of the kinetic representation (see [11]).

Theorem 3.7. Let η be of infinite order. Then there exists a kinetic representation

µ ∈ K 1 with the property

∇Tµ(U ) = ∇Tη(U )E(U ), E(U ) = F−1

ξ exp(−iξjAj(U )).

and 〈µ(U ), 1〉 = η(U ) for all U ∈ S. Any other kinetic representation differs from

µ only by a compactly supported distribution C ∈ E ′(Rd) which is independent of

U and satisfies 〈C, 1〉 = 0.

It is easy to see that in the case of scalar conservation laws, every smooth
function η is an entropy of infinite order (because primitives can always be obtained
by integration). This shows that the kinetic approach is extremely well suited to

the scalar case. For general linear hyperbolic systems, where F j(U ) = AjU with
constant matrices Aj , primitives of AαAk are just linear functions. Hence, at least
all linear entropies are of infinite order in that case. For non–linear systems in
higher dimensions, the assumption that entropies are of infinite order turns out to
be quite restrictive. In fact, higher order entropies are more difficult to find than
usual entropies which is not surprising since additional integrability conditions
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have to be satisfied. Non-trivial examples are obtained for the systems proposed
by Brenier and Corrias [3] as well as the isentropic Euler equations with constant
pressure.

3.5. Entropies of finite order

As example, we consider the Euler equations in one space dimension. Here, the
vector of unknowns U = (ρ, ρu, ρε)T consists of mass density ρ, momentum density
ρu and energy density ρε. Important derived quantities are velocity u, temperature
T = (γ−1)(ε−u2/2) and pressure p = ρT where γ > 1 is a material constant. The
state space is a convex cone S = { ρ(1, u, ε)T | ρ > 0, T > 0 }. The nonlinear flux
F is homogeneous of degree one so that its Jacobian A is homogeneous of degree
zero

F =





ρu
ρ(u2 + T )
ρ(ε+ T )u



 , A =





0 1 0
1

2
(γ − 3)u2 (3 − γ)u γ − 1

1

2
(γ − 2)u3 − γ

γ−1
Tu ( 3

2
− γ)u2 + γ

γ−1
T γu



 .

By taking the U–curl of the rows of (A)n, it can be checked whether the linear
entropies are of higher order. For the entropy η1(U ) = ρ one finds second order
(third order if γ = 3), for η2(U ) = ρu first order (second order if γ = 3), and for
η3(U ) = ρε always first order. Hence, the maximal order of consistency in (11) is
restricted to n = 1. A constraint function can be constructed based on formula
(18) with η = ηi to determine the component µi. The choice of integration curves
ΓU is motivated by the structure of S and F

ΓU : = { sU | s ∈ (0, 1] } U ∈ S.
On these curves the Jacobian A is constant due to homogeneity of F so that

µ(U ; v) = F−1

ξ exp(−iξA(U ))U . (19)

To calculate F−1

ξ exp(−iξA) we diagonalize A which has eigenvalues λ1 = u, λ2 =

u−c and λ3 = u+c with the sound speed c =
√
γT . In a basis of right eigenvectors,

the matrix exp(−iξA) has the form diag(exp(−iξλk)) so that the inverse Fourier
transform yields a linear superposition of δ(v − λk). Using the abbreviation

f(U ; v) = ρ (2(γ − 1)δ(v − u) + δ(v − u+ c) + δ(v − u− c)) /2γ

the resulting constraint function can be written as

µ(U ; v) = (1, v, v2/2 + (3 − γ)/(2γ − 2)|v − u|2)Tf(U ; v).

We remark that the same constraint function follows from the approach in [8].
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