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LBM – Discrete Dynamics and Finite

Difference Method

Michael Junk∗

Abstract

With the lattice Boltzmann method, approximate solutions to the
incompressible Navier-Stokes equation can be obtained based on dis-
crete microscopic models of gases. The aim of this article is to ana-
lyze the LBM approach and show that it is closely related to standard
methods like explicit finite difference discretizations and relaxation
systems. The new insight into the method allows to extract elements
of LBM and to use them in standard schemes like Chorin’s projection
method.

1 Introduction

In recent years, the lattice Boltzmann method (LBM) has been proposed
as potential alternative to conventional solvers for hydrodynamic problems
[1, 2, 7]. The basic idea of the method is the numerical simulation of a very
simple, fully discrete, microscopic gas model which is nevertheless capable of
correctly describing macroscopic flow behavior.

However, if LBM is considered mainly as a numerical method to solve
equations of fluid dynamics, like the Navier-Stokes equation, it is natural
to ask for its relation to already existing schemes. Based on the frequently
used D2Q9 model (nine discrete velocities in two space dimensions), the
close relation between LBM and standard methods is demonstrated. It turns
out that the discrete modeling in the derivation of the lattice Boltzmann
method leads to an explicit finite difference discretization of the Navier-
Stokes equation which operates in the stability constellation ∆t = O(∆x2).
The stencils which appear in the discretization have an interesting structure
and they always involve diagonal neighbors. Since conservation properties
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are taken care of in the modeling step, the resulting scheme shares these
properties. Adopting lattice Boltzmann stencils in other schemes is possible
and can have positive effects as demonstrated for Chorin’s projection method.

2 The Lattice Boltzmann Algorithm

We concentrate on two-dimensional flows for notational simplicity. The first
discrete aspect of the lattice Boltzmann model concerns the material itself
which is assumed to consist of microscopic particles. These particles can only
stay at discrete nodes of a regular lattice (see Fig. 1).

Figure 1: Regular lattice and discrete velocities

In each discrete time step, the particles can move to a neighboring site or
stay at their node which gives rise to nine possible velocities C0, . . . , C8 ∈
{−1, 0, 1}2. Consequently, the state of the particle system at time t ∈ N is
characterized by the densities Ni of particles with velocity C i at each node
x of the grid (see Fig. 2).PSfrag replacements
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Figure 2: Discrete mass distribution
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Macroscopic quantities like the total mass density ρ or the average velocity
u are then given as averages of the microscopic densities

ρ =
8
∑

i=0

Ni, u =
8
∑

i=0

NiC i/ρ.

The state evolution consists of two steps: in the collision phase, atoms aris-
ing from neighboring nodes interact instantaneously and may change their
velocities which leads to a local redistribution of the densities Ni (Fig. 3).

Figure 3: Redistribution of atoms during a collision

During this collision process, total mass and momentum are unchanged.
The tendency in this interaction is towards an equilibrium distribution

N eq
i = N∗

i

(

ρ + 3ρu · C i +
9

2
ρu ⊗ u : (C i ⊗ Ci − I/3)

)

(1)

and is modeled by a simple relaxation. In (1), the quantities N ∗

i are constants
(4/9 for the zero velocity, 1/9 for the velocities of length one, and 1/36 for
those of length

√
2), I is the identity matrix, u ⊗ u is a matrix with entries

uiuj and A : B =
∑

i,j AijBij denotes the matrix scalar product. We remark
that equilibrium distributions for other lattices practically have the same
structure and differ only in the constants so that the following considerations
carry over to other models.

After collision, the atoms move in a discrete time step to neighboring
sites. The combination of the two steps leads to the evolution

Ni(t + 1, x + C i) = Ni(t, x) + ω(N eq
i (t, x) − Ni(t, x)) (2)

The simplest method to incorporate solid wall boundary conditions is the
bounce back step: atoms which move towards the boundary are simply re-
flected to their original node.
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If the average velocity u in this process is small compared to the micro-
scopic velocities, one obtains an approximate Navier-Stokes solution where
the variations in the density are related to the pressure and the viscosity
is controlled by ω. Usually, this behavior is explained by performing a
Chapman-Enskog expansion of (2) under the assumption of small Knud-
sen and Mach number (see [7]). However, it is also possible to relate the
algorithm (2) directly to a discretization of the Navier-Stokes equation. This
approach is presented in the following section.

3 Consistency Analysis of LBM

In order to recover a discretization of the Navier-Stokes equation from (2),
two main steps are necessary: a change of scales and a change of variables.
In the lattice Boltzmann evolution (2), time and space scales are chosen in
view of the microscopic movement of the particles. In particular, the time
step is ∆tLB = 1 and since C i ∈ {−1, 0, 1}2, the distance between nodes is
∆xLB = 1 (to obtain a fine discretization, a typical length L of the underlying
problem therefore satisfies L � 1). The small Mach number assumption
implies that a typical average speed U is small compared to the sound speed
which is related to the speed of the particles (we introduce ε = U as small
parameter). While these scales are very reasonable for the implementation of
the method, they are not related to the underlying Navier-Stokes problem.
If we consider for example the flow around a circular disk (see Fig. 4),
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Figure 4: Navier-Stokes and Lattice Boltzmann scales

a typical length L is given by the diameter of the disk, a typical speed
U is the inflow velocity, and the related typical time scale T is given by the
time required to travel a distance of several L with speed U . Assuming that
L and U are given in lattice Boltzmann scales, we find the Navier-Stokes
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space and time steps

∆x =
∆xLB

L
=

1

L
, ∆t =

∆tLB

T
= U

∆tLB

L
= U

1

L
= U∆x.

In [6] it was shown that ε = O(∆x) is necessary in order to get consistency
of LBM with the Navier-Stokes equation. We thus conclude that in the
problem related scales the stability condition ∆t = O(∆x2) known from
explicit discretizations of parabolic equations is recovered. Changing the
scales in (2), we end up with the evolution

Ni(t + ∆t, x + ∆x C i) = [Ni + ω(N eq
i (ρ, εu) − Ni)](t,x) (3)

In the second step, we change the lattice Boltzmann variables Ni in (3) to
problem related variables. Of primary interest is, of course, the velocity field
u and the pressure p, or equivalently, the momentum m = ρu =

∑

i NiCi

and the density ρ =
∑

i Ni which is proportional to p in lattice Boltzmann
models. Note that both ρ and m depend linearly on the densities Ni. In
order to obtain a set of variables which includes the quantities ρ and m

and which is equivalent to N = (N0, . . . , N8), we consider additional linear
functionals of the distribution N . For example, we introduce the symmetric
tensor

θ =
∑

i

Ni(Ci ⊗ C i − I/3)

which yields three independent linear functionals. In a similar manner, we
can define two third order and one fourth order moment giving rise to three
more variables w (for details see [4]). Altogether, a linear invertible mapping
N 7→ (ρ, m, θ, w) is obtained. Applying the variable transformation to the
evolution (3), the finite difference expressions in Ni turn into finite difference
expressions in the new variables.

In order to illustrate this transformation process, let us consider a very
much simplified version of (3) where we set ω = 1 and N eq

i = N∗

i ρ

Ni(t + ∆t, x + ∆x C i) = N∗

i ρ(t, x). (4)

The corresponding evolution of the density ρ =
∑

i Ni has the form

ρ(t + ∆t, x) =
∑

i

Ni(t + ∆t, x) =
∑

i

N∗

i ρ(t, x − ∆x C i)

Note that the last expression involves the evaluation of ρ at all neighboring
nodes of x with certain weights N ∗

i . This is a standard finite difference
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expression which can also be written using a finite difference stencil. With
the definition of the N ∗

i , we get

ρ(t + ∆t, x) = ρ(t, x) +
1

36

[

1 4 1
4 −20 4
1 4 1

]

ρ(t, x).

Subtracting ρ(t, x) on both sides and dividing by ∆t, we find

ρ(t + ∆t, x) − ρ(t, x)

∆t
=

1

6

∆x2

∆t
∆̃ρ(t, x)

where ∆̃ is the standard nine-point stencil of the Laplacian. Consequently,
if Ni follows the evolution (4), the total density is the solution of a finite
difference discretization of the diffusion equation ∂tρ = ν∆ρ if ∆t = 6∆x2/ν.
Applying the same analysis to the more complicated evolution (3), we find
that the moments ρ and m = ρu evolve, up to terms of order O(ε2), according
to the equations

∂ρ

∂t
+ div ρu =

1

6
∆ρ

∂ρu

∂t
+ div (ωρu ⊗ u + (1 − ω)θ) +

∇ρ

3ε2
=

1

6
(∆ + 2∇ div )ρu − ∇∆ρ

18

The higher moments satisfy similar equations with hyperbolic operators on
the left hand side but since they are not conservative quantities, source terms
of relaxation type appear on the right hand side. For example, the equation
for θ has the structure

∂θ

∂t
+ div Π = − ω

ε2

(

θ − ρu ⊗ u +
2

3ω
S[ρu]

)

− 1

27ε2
∇⊗∇ρ + O(1)

where Sij = (∂xj
ρui + ∂xi

ρuj)/2, Π depends on the additional variables w,
and the term O(1) involves derivatives of ρu, θ and ρu ⊗ u. Analyzing the
equations for small ε, we find that θ = ρu ⊗ u − 2

3ω
S[ρu] + O(ε2) and that

∇ρ = O(ε2). The latter condition can be reformulated by introducing the
pressure p through ρ = ρ̄(1 + 3ε2p) where ρ̄ is some constant. Using these
relations, the moment equations transform into

div u = O(ε2),
∂u

∂t
+ div u ⊗ u + ∇p =

1

3

(

1

ω
− 1

2

)

∆u + O(ε2) (5)

which are the Navier-Stokes equations in leading order. In analogy to the
simple diffusion example, the transformation of variables in (3) also shows
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how the differential operators in (5) are approximated by finite difference
stencils. The discrete version of (5) turns out to be

1

12∆x

([

−1 0 1
−4 0 4
−1 0 1

]

un
1 +

[

1 4 1
0 0 0
−1 −4 −1

]

un
2

)

= O(ε2)

un+1
1 − un

1

∆t
+

1

12∆x

[

−1 0 1
−4 0 4
−1 0 1

]

un
1u

n
1 +

1

4∆x

[

1 0 1
0 0 0
−1 0 −1

]

un
1u

n
2 +

1

36∆x

[

−1 0 1
−4 0 4
−1 0 1

]

pn

=

(

1

36∆x2

[

1 4 1
4 −20 4
1 4 1

]

+
1/ω − 1

216 ∆x2

[

5 0 8 0 5
4 0 −8 0 4
0 0 −36 0 0
4 0 −8 0 4
5 0 8 0 5

])

un
1 + O(ε2)

with a similar relation for the second component u2. Note that both stencils
in the discretization of div u can be viewed as convex combinations of stan-
dard central difference approximations. and that the expression ∂x2

u1u2 is
discretized with a different stencil for ∂x2

(the same holds for ∂x1
u1u2 in the

u2 equation). As a common feature, all stencils involve diagonal neighbors
which is due to the underlying set of discrete velocities. Finally, the viscous
Laplacian consists of a fixed contribution based on the nine-point Laplacian
and a 25-point stencil which has its origin in the expression div S[u] and
which can be controlled by the collision parameter ω (the unusual size is due
to the combination of the discrete divergence and discrete derivatives in the
components of S). For ω > 1, it has an anti-diffusive influence to counteract
the nine-point Laplacian.

An interesting result follows from the observation that lattice Boltzmann
solutions do not exhibit any pressure oscillations which are known to appear
in schemes for the Navier-Stokes equation which use non-staggered grids to
store velocity and pressure variables. One might suspect that this is due to
the unusual form of the stencils. In the following section, this hypothesis is
supported by using the lattice Boltzmann stencils in connection with Chorin’s
projection method for the Stokes equation.

4 Extracting Lattice Boltzmann Ideas

A standard approach to solve the Stokes (or Navier-Stokes) equation nu-
merically is Chorin’s projection method [3]. In this approach, the temporal
discretization is semi-implicit

u
n+1(x) = u

n(x) −∇pn+1(x) + ν∆u
n(x). (6)

The pressure is determined from div u
n+1 = div u

n = 0 and (6)

div∇pn+1 = ν div ∆u
n. (7)
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Discretizing ∆ in (6) with the five-point Laplacian and the first derivatives
with standard central differences

∂

∂x1

≈ 1

2∆x
[−1 0 1 ] ,

∂

∂x2

≈ 1

2∆x

[

1
0
−1

]

one is naturally led to a wide Laplacian in equation (7)

∆ ≈ 1

∆x2

[

1
0

1 0 −4 0 1
0
1

]

,

by iterating discrete divergence and discrete gradient. If half-sided stencils
are used near the boundary of the domain, it is well known that the resulting
numerical solution exhibits pressure oscillations which reduce the accuracy
to first order in pressure (for details see [8]). The reason is that the wide
Laplacian essentially splits the grid into two independent sub-grids, on each
of which the pressure Poisson equation is solved with boundary conditions
which differ in third order. These slight differences are then amplified by the
viscous five point Laplacian and reappear in first order.

To give an example, we consider the test problem presented in [8] where
(6) is solved in Ω = (0, 1) × (0, 1) with no-slip conditions u = 0 on the top
and bottom boundaries and periodic conditions in horizontal direction. As
initial conditions, we choose

u1(x1, x2) = 6x2(1 − x2) + 16(2x2 − 6x2
2 + 4x3

2) sin(2πx1)/2π,

u2(x1, x2) = −16(x2
2 − 2x3

2 + x4
2) cos(2πx1).

Taking a MAC-solution with a fine discretization as exact solution, we cal-
culate the error with the standard discretization of Chorin’s method at time
t = 1 on a 32× 32 grid (see Fig. 5). Clearly, the error is strongly oscillating.
If, on the other hand, we use the lattice Boltzmann stencils

∂

∂x1

≈ 1

12∆x

[

−1 0 1
−4 0 4
−1 0 1

]

,
∂

∂x2

≈ 1

12∆x

[

1 4 1
0 0 0
−1 −4 −1

]

,

for divergence and gradient and the 25-point Laplacians to discretize

∆u1 ≈
1

72∆x2

[

5 0 8 0 5
4 0 −8 0 4
0 0 −36 0 0
4 0 −8 0 4
5 0 8 0 5

]

u1, ∆u2 ≈
1

72∆x2

[

5 4 0 4 5
0 0 0 0 0
8 −8 −36 −8 8
0 0 0 0 0
5 4 0 4 5

]

u2,

then the oscillating errors induced by the Laplacian in (7) which is obtained
by combining discrete divergence and gradient

∆ ≈ 1

72∆x2

[

1 4 8 4 1
4 0 −8 0 4
8 −8 −36 −8 8
4 0 −8 0 4
1 4 8 4 1

]
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Figure 5: Error using the standard discretization

is no longer amplified. The corresponding error in the pressure is shown in
Fig. 6. For a detailed alternating error analysis and a numerical convergence
study, we refer to [5].
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Figure 6: Error using lattice Boltzmann stencils
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