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Abstract. In the lattice Boltzmann method (LBM), macroscopic flow behavior
is described by simulating a very simple, fully discrete, microscopic gas model in-
stead of discretizing the flow equations directly. Based on the frequently used D2Q9
model (nine discrete velocities in two space dimensions), we show how surface ten-
sion effects can be combined with LBM. The applicability of the two-phase lattice
Boltzmann method is demonstrated with simulations of filtration processes.

1 Introduction

In lattice Boltzmann methods, discrete velocity models of kinetic equations
are used to obtain approximate solutions of the incompressible Stokes or
Navier-Stokes system. The idea of LBM rests on the observation that the ki-
netic and the macroscopic models are equivalent in the limit of small Knud-
sen and Mach numbers (see [1,4,5,13] for reviews on LBM). Extensions of
the method to two phase flows, so called immiscible lattice Boltzmann mod-
els, originate in lattice gas cellular automata [6,7,11,12]. While most of these
approaches are based on hexagonal grids with seven kinetic velocities, we
present a generalization which is applicable to all lattice Boltzmann schemes
in two and three dimensions and with arbitrary numbers of velocities.

A general advantage of lattice Boltzmann schemes is the easy applicabil-
ity to flows in complex geometries, for example, the flow of an air-oil mixture
through a filter (i.e. a combination of porous materials). The basic goal in
the design of such filters is the maximization of oil absorption with the side
condition that the pressure drop, which is related to the energy consumption
of the process, is as small as possible. The macroscopic flow through the filter
can be approximated by a two-phase Darcy’s law but this approach requires
material parameters such as relative permeabilities. Since the experimental
determination of these dynamical properties is a difficult task, a natural idea
is to resort to numerical simulations. To this end, a representative element of
the filter (a periodicity cell) is considered (see Fig. 1). The fiber structure of
the filter is generated stochastically and is controlled by anisotropy param-
eters and a prescribed radius distribution to model different filter materials.
The flow of the oil-gas mixture is characterized by a small Reynolds number
(Re ≈ 0.01) and can be described by the two-phase Stokes equation. The
ratio of dynamic viscosities is µoil/µgas ≈ 1000.



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

2 Michael Junk

Fig. 1. Periodicity cell of the filter material

The discretization with the Lattice Boltzmann method is carried out by
superposing the geometry with a regular cubic mesh in which all mesh points
are deleted which are located in the fiber material. On the remaining mesh
points, the simple lattice Boltzmann evolution is carried out consisting of
transport and collision steps and so called recoloring steps which are required
to keep the phases separated. Typical results are given in Fig. 2 which show
the interfaces between oil and air and the fibers of the filter. While the left
figure represents an isotropic distribution of fibers, the anisotropy in the right
one is much stronger. Here, the fibers are almost aligned in vertical direction.

Fig. 2. Oil interface in a filter structure

2 The Two-Phase Stokes Equation

We assume that the two phases occupy the sets Ω1(t), Ω2(t) in R
d, d ∈ {2, 3}

with the common interface Γ (t). The regular interface has a field n of unit
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normal vectors and moves with the flow velocity u which is, in each phase, a
solution of the Stokes equation

∂u

∂t
=

1

%
div σ, div u = 0, x ∈ Ωi, i = 1, 2. (1)

Here, σij = −pδij + 2µSij is the stress tensor with pressure p and viscous
stresses Sij = (∂ui/∂xj + ∂uj/∂xi)/2 which are proportional to the fluid
viscosity µ. At the fluid interface Γ , the surface tension balances the jump
of the normal stresses. Together with the assumed continuity of u, this leads
to the conditions [u] = 0, and [σn] = ακn, where α is a (constant) surface
tension coefficient, κ is the mean curvature of Γ and [·] denotes the difference
on the interface between limits from the two phases.

For our purpose, it is convenient to transform the Stokes equations (1) in
each phase together with the jump condition into a single equation on the full
space R

d. This idea is frequently used in the simulation of multi-phase flows
(see, for example, [3,2] and the references therein). We first bring (1) in a weak
form by multiplying the equations with a test function and integrating by
parts. Then, we add the resulting expressions, take the jump conditions into
account and introduce 〈δΓ , φ〉 :=

∫

Γ
φ do as a surface distribution. Eventually,

we obtain the two-phase Stokes equation on the full space R
d but now in a

distributional sense

∂%u

∂t
= div σ − ακnδΓ , div u = 0. (2)

It has been noted in [10] that the surface tension term κnδΓ can be written
as a divergence κnδΓ = div ((I − n⊗ n)δΓ ), where I is the identity matrix.
This allows us to reformulate (2) as

∂%u

∂t
+ div (α(I − n ⊗ n)δΓ ) = div σ, div u = 0. (3)

Written in this way, the two-phase Stokes equation appears formally like the
single-phase Navier-Stokes equation if we replace the surface tension term by
the inertia term %u⊗u. This simple observation turns out to be very useful to
construct a lattice Boltzmann approximation of (3). The correct dynamical
behavior is obtained by replacing %u ⊗ u in the single-phase Navier-Stokes
lattice Boltzmann algorithm with the expression α(I − n ⊗ n)δΓ . Of course
additional care has to be taken to represent δΓ and to keep the two fluids
separated.

3 LBM for the Navier-Stokes Equation

To understand the lattice Boltzmann algorithm, one can think of a hypothet-
ical liquid whose atoms can only stay at discrete nodes of a regular lattice.
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Here, we consider the case of a square lattice in two space dimensions. In
each discrete time step, the atoms either rest at their node or move to a
neighboring site. In the case of a square grid, this gives rise to nine possi-
ble velocities C0, . . . , C8 ∈ {−1, 0, 1}2. Consequently, the state of the liquid
is completely described if the densities Ni of atoms with velocities Ci are
known at each node. Macroscopic quantities like the total mass density ρ or
the average velocity u are then given as averages of the microscopic densities
ρ =

∑

i Ni and u =
∑

i NiCi/ρ. The state evolution of this hypothetical
liquid now consists of two steps: in the collision phase, atoms arriving from
neighboring nodes interact instantaneously and may change their velocities
which leads to a local redistribution of the densities Ni in which total mass
and momentum are conserved. The tendency in this interaction is towards
an equilibrium distribution

Neq
i = N∗

i

(

ρ + 3ρu · Ci +
9

2
ρu⊗ u : (Ci ⊗ Ci − I/3)

)

(4)

where N∗

i are constants (4/9 for the zero velocity, 1/9 for the velocities of
length one, and 1/36 for those of length

√
2), u ⊗ u is a matrix with entries

uiuj and the colon denotes the matrix scalar product A : B =
∑

i,j AijBij .
We remark that equilibrium distributions for other lattices have the same
structure and differ only in the constants.

After collision, the atoms move in a discrete time step to neighboring
sites. The combination of the two steps leads to the evolution

Ni(t + 1, x + Ci) = Ni(t, x) + ω(Neq
i (t, x) − Ni(t, x))

If the average velocity u in this process is small compared to the microscopic
velocities, one obtains an approximate Navier-Stokes solution where the vari-
ations in the density are related to the pressure and the viscosity is controlled
by ω. Usually, this behavior is explained by performing a Chapman-Enskog
expansion [13] but it also follows from a simple transformation of variables
[8].

4 LBM for the Two-Phase Stokes Equation

To obtain a lattice Boltzmann algorithm for the two-phase Stokes equation,
we modify the algorithm of the previous section by replacing ρu ⊗ u in (4)
with an approximation of α(I −n⊗n)δΓ . In the standard immiscible lattice
Boltzmann algorithm [7], the approximation is obtained from the macroscopic
mass densities ρ1 and ρ2 of the fluids occupying Ω1 and Ω2. The difference
χ = ρ1 − ρ2 is positive in Ω1 and negative in Ω2. Hence, if ρi are smooth
functions which quickly decay to zero in a narrow mixing region, we can define
the interface as the level set {χ = 0}. The normal field is then obtained
by n = ∇χ/|∇χ| and since χ approximates a jump function, the surface
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delta distribution δΓ satisfies δΓ ≈ c|∇χ| where c is the inverse of the jump
height. The gradient of χ is typically discretized by an expression of the form
F =

∑

i Ciχ(x + Ci)/6 which is called color gradient. Note that this is just
a compact way of denoting the finite difference stencils

F1 =
1

6

[

−1 0 1
−1 0 1
−1 0 1

]

χ, F2 =
1

6

[

1 1 1
0 0 0
−1 −1 −1

]

χ

which clearly approximate the gradient. Combining these steps, we arrive at
the approximation

(I − n ⊗ n)δΓ ≈ (I − F ⊗ F /|F |2)|F |.

Finally, a mechanism is required to transport the interface along with the
flow which prevents the mixing of the two liquids. In the classical immis-
cible lattice Boltzmann algorithm, the densities ρ1 and ρ2 are related to

microscopic distributions N
(1)
i and N

(2)
i whose sum Ni is the total distri-

bution which appears in the main algorithm. If the transport step in this

algorithm is implemented as a separate transport of N
(1)
i and N

(2)
i , one can

show that the resulting evolution of χ = ρ1 − ρ2 is consistent to an advec-
tion diffusion equation [9]. To counteract the unwanted diffusion which is
related to a flux proportional to −∇χ, the so called recoloring step is used.

In this step, the distributions N
(j)
i are modified in such a way that the vector

w =
∑

i(N
(1)
i − N

(2)
i )Ci, which controls the flux of χ =

∑

i(N
(1)
i − N

(2)
i )

due to transport, points preferably opposite to −∇χ. More precisely, the
scalar product w · F is maximized under side conditions which ensure non-
negativity of distributions and conservation of total mass and momentum.
This approach leads to an efficient transport method for χ which maintains
a sharp interface (a more detailed investigation can be found in [9]).
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