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Abstract

Originally, Kinetic Schemes have been used as numerical methods

to solve the system of compressible Euler equations in gas dynamics.

The main idea in the approach is to construct the numerical flux func-

tion based on a microscopical description of the gas. In this article

the schemes are investigated in the case of isentropic Euler equations

and low Mach numbers. Expanding the microscopical velocity distri-

bution naturally leads to new Kinetic Schemes with strong resemblance

to Lattice Boltzmann methods. By adjusting the parameters of the Ki-

netic Scheme the numerical viscosity can be used to reproduce a given

physical viscosity. In this way, a finite difference solver for the incom-

pressible Navier–Stokes equation is obtained. Its close relation to the

Lattice Boltzmann approach is highlighted.
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1 Introduction

Generally speaking, Kinetic Schemes are numerical methods to solve systems
of hyperbolic conservation laws. To explain the basic idea, we consider the
paradigmatic case of gas dynamics. The classical derivation of the govern-
ing evolution equations relies on a continuum model of a gas in a state of
local thermodynamical equilibrium. The Euler equations for densities of mass
ρ, momentum ρu and energy E are then obtained by applying conservation
principles [3].

A second and more general description is obtained with Gas–Kinetic theory.
In this approach, the state variable is a particle distribution function f(x, v, t)
which specifies the density of microscopic gas particles with velocity v at time
t and position x. The evolution of f is given by Boltzmann equation [4]. Phys-
ically, the basic quantities ρ, ρu, E of the macroscopic approach can be recov-
ered from f by taking velocity averages of the corresponding microscopic mass,
momentum and energy densities f, vf, 1

2
‖v‖2f . A mathematical connection be-

tween the two descriptions is obtained in the so called hydrodynamical limit
where particle collisions become dominant. In this asymptotic case, solving
Boltzmann equation is equivalent to solving Euler equations. This is possible
because the particle distribution function f attains a very special functional
form: as a function of v it is a Maxwellian distribution

M(v) =
ρ

(2π)
d
2 cd

exp

(

−|v − u|2
2c2

)

,

c2 =
p

ρ
, p =

2

3

(

E − 1

2
ρ|u|2

)

, v ∈ R
d.

(1)

and the (x, t)–dependence enters only through the parameters ρ, u, E which are
solutions of the Euler system. (We assume a d dimensional velocity space.)

In Kinetic Schemes, the relation between the two models is used to obtain a
scheme for the Euler system. Given a macroscopic state ρ, u, E depending on
space and time, the idea is to set up a continuum of microscopic particles whose
velocity distribution is given by the equilibrium distribution (1). The Boltz-
mann evolution is then approximated by a splitting approach which separates
transport from collisions. First, the particles move freely in space according
to their prescribed velocities. In this process, the macroscopic parameters ρ, u
and E also evolve in time. However, the velocity distribution deviates more
and more from the equilibrium form so that equivalence between Boltzmann
and Euler description is no longer given. Therefore, transport is stopped after
a small time step and collisions are assumed to take place. In general, this
collision process is a complicated procedure but in the limit of dominating
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collisions this step is just a projection of the distribution function into equi-
librium form. Since the parameters ρ, u, E are invariant under collisions, they
keep their values which resulted from the transport step. With the distribution
function back in equilibrium form, the whole process is then iterated to obtain
an approximation at larger times.

A very similar approach is given by Lattice Boltzmann methods which also
employ the evolution of microscopic gas models to approximate macroscopic
equations of fluid dynamics. Compared to Kinetic Schemes which have been
designed for the hydrodynamical limit, Lattice Boltzmann methods rather
work in a diffusion limit so that they approximate incompressible Navier–
Stokes equations. While the Lattice Boltzmann approach is based on simple,
discrete gas models, Kinetic Schemes can be formulated with a wide variety
of equilibrium distributions and space discretizations. As we will see below,
Kinetic Schemes based on discrete equilibrium distributions applied in low
Mach number flows can be viewed as building blocks of the Lattice Boltzmann
method.

In 1974, the first Kinetic Scheme has been presented by Sanders and Prender-
gast [29]. The chosen distribution function is not a Maxwellian but a weighted
sum of Dirac deltas. A modification and extension of this discrete equilib-
rium distribution function will be the basis for Kinetic Schemes in Lattice
Boltzmann form presented below. A few years later, an approach to con-
struct Kinetic Schemes for general hyperbolic systems of conservation laws
is described in a review paper by Harten, Lax and van Leer [12] where the
schemes are called Boltzmann-type schemes. In the 80’s, Kinetic Schemes
based on the Maxwellian distribution have been analyzed by several authors
[24, 28, 7, 6]. Kaniel investigates a Kinetic Scheme for the isentropic Euler
equations [15, 18, 27] based on yet another distribution function. A general
approach to construct Kinetic Schemes for the Euler system has been intro-
duced by Perthame in [21]. In [17], Kinetic Schemes for moment systems
proposed by Levermore and Anile are constructed. Also, a new approach is
presented which allows the construction of consistent Kinetic Schemes for gen-
eral systems of conservation laws. It is a generalization of the scalar case which
has been analyzed in [2, 11, 22].

In the following we will focus on the case of isentropic Euler equations

∂tρ + div(ρu) = 0,

∂t(ρu) + div(ρu⊗ u) + ∇p(ρ) = 0.
(2)

which is a hyperbolic system if the sound speed

cs(ρ) =
√

p′(ρ)

4



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

is real. In order to set up a Kinetic Scheme for (2), a natural particle distri-
bution function is the Maxwellian (1) where now the given pressure law p(ρ)
is used

M(ρ, u; v) =
ρ

(2π)
d
2 cd

exp

(

−|v − u|2
2c2

)

.

In the case of perfect gases for which

p(ρ) = Aργ , γ ≥ 1,

the velocity parameter c(ρ) =
√

p(ρ)/ρ and the sound speed cs are related by

cs =
√
γ c.

In particular, for γ = 1 the velocities coincide and are independent of ρ. The
corresponding pressure law p(ρ) = c2sρ is called isothermal in view of the state
equation p = Rθρ which connects density and pressure with the absolute
temperature θ (R > 0 is the gas constant). We will mainly consider the
isothermal case because it is the simplest choice and in the low Mach number
limit the actual form of the pressure law is irrelevant.

In Section 2, Kinetic Schemes are introduced based on a general class of dis-
tribution functions which contains the Maxwellian as a special case. Then,
an expansion of the distribution functions gives rise to new schemes which
are shown to be consistent to (2). Analyzing the modified equations for these
schemes in a low Mach number limit eventually shows that the Kinetic Schemes
yield approximate solutions to the incompressible Navier Stokes equation. In
Section 5 a particular scheme is analyzed and finally relations to Lattice Boltz-
mann methods are highlighted.

2 The Kinetic Scheme

To motivate the definition of Kinetic Schemes we use a formal argument which
can be made precise for scalar conservation laws [19]. Let us assume that
F (x, v, t) is the solution of a Boltzmann like equation

∂tF + vi∂xi
F = Q (3)

where Q satisfies
〈Q, 1〉v = 0, 〈Q, v〉v = 0

(we use Einstein’s summation convention and 〈·, ·〉v denotes integration with
respect to v). Moreover, Q is supposed to constrain F to the special v–
dependence F (x, v, t) = M(ρ(x, t), u(x, t); v) where M is the Maxwellian. We

5
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note that
〈M(ρ, u; v), 1〉v = ρ,

〈M(ρ, u; v), vi〉v = ρui,

〈M(ρ, u; v), vivj〉v = ρuiuj + p(ρ)δij,

(4)

Multiplying (3) with

(

1
v

)

and integrating over v we obtain with U(x, t) =

(ρ(x, t), u(x, t))

∂t

〈

M(U(x, t); v),

(

1
v

)〉

v

+ ∂xi

〈

M(U(x, t); v), vi

(

1
v

)〉

v

= 0.

which is exactly the isentropic Euler system due to (4). This relation between
kinetic and macroscopic equation can be used to set up a numerical scheme. In
order to approximate the evolution (3) we enforce the constraint given through
Q not continuously but only at discrete points in time. More precisely, we
neglect the if U0(x) is the given initial value, we consider the solution of the
resulting free transport equation

∂tF + vi∂xi
F = 0, F (x, v, 0) = M(U 0(x); v)

which is just
F (x, v, t) = M(U0(x− vt); v).

Since v appears in the argument of U 0, the distribution function increasingly
deviates from a Maxwellian for growing t (which is the consequence of neglect-
ing Q). Hence, the moment vector

(

ρ(x, t)
ρu(x, t)

)

=

〈

M(U0(x− vt); v),

(

1
v

)〉

v

(5)

satisfies (2) only up to some error term which also grows in time. To control the
error, the free flow is stopped after some small time step ∆t and the constraint

M(U0(x− v∆t); v) −→ M(U(x,∆t); v)

is enforced with U(x,4t) = (ρ(x,4t), u(x,4t)) defined in (5). Iterating this
process, we get the scheme

(

ρn+1(x)
ρn+1un+1(x)

)

=

〈

M(Un(x− v∆t); v),

(

1
v

)〉

v

, n ∈ N0.

Of course, a discretization in space is also necessary to obtain a numerical
code.
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As important observation we note that the only structural features of M we
have used are the moment conditions. In particular, we can replace M(ρ, u; v)
by any other function f(ρ, u; v) which satisfies

〈f(ρ, u; v), 1〉v = ρ,

〈f(ρ, u; v), vi〉v = ρui,

〈f(ρ, u; v), vivj〉v = ρuiuj + p(ρ)δij,

(6)

The corresponding Kinetic Scheme then reads
(

ρn+1(x)
ρn+1un+1(x)

)

=

〈

f(Un(x− v∆t); v),

(

1
v

)〉

v

, Un = (ρn, un). (7)

For a quite general class of distribution functions f the (ρ, u) dependence is of
the form

f(ρ, u; v) =
ρ

cd
f ∗

(

v − u

c

)

where f ∗ is a non negative, symmetric measure which is normalized in the
sense

〈f ∗(v), 1〉v = 1,

〈f ∗(v), vivj〉v = δij.
(8)

An isotropy condition on the fourth order moments

〈f ∗(v), vivjvkvl〉v = λ (δijδkl + δikδjl + δilδkj) (9)

is not required for classical Kinetic Schemes but it will be important in the
low Mach number case considered below.

We note that with

f ∗(v) =
1

(2π)
d
2

exp

(

−1

2
|v|2
)

(10)

the Maxwellian belongs to the above class of distribution functions, satisfying
λ = 1. Another example is based on the suitably normalized characteristic
function of the d–dimensional ball

f ∗(v) =
Γ
(

d
2

)

d

2(
√

(d+ 2)π)d
X[0,

√
d+2](|v|). (11)

The approach based on this distribution function has been analyzed at length
in [15, 18]. The fourth order tensor in (9) is characterized by λ = d+2

d+4
.

Finally, we are especially interested in discrete distribution functions like

f ∗(v) =

(

1 − 2

σ2

)

δ(v) +
1

nσ2

2n
∑

l=1

δ(v − σel) (12)

7
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for the two dimensional case, where σ >
√

2, n ≥ 2 and el are unit vectors of
the form

el =

(

cos
(

lπ
n

)

sin
(

lπ
n

)

)

, l = 1, . . . , 2n.

For the full Euler system, the case n = 2 has been mentioned in [29]. For our
purpose, however, the case n = 3 will be most important because it leads to a
simple Kinetic scheme which operates on a hexagonal grid similar to Lattice
Boltzmann methods in 2D [5]. We note that for n = 2 the fourth order tensor
is not of the form (9) since 〈f ∗(v), v2

1v
2
2〉v = 0 but 〈f ∗(v), v4

1〉v 6= 0 (which
excludes this particular case from the low Mach number expansion below).
For all larger n we obtain (9) with λ = σ2/4. Another choice which is related
to widely used Lattice Boltzmann schemes [1, 14] is given by the nine velocity
distribution

f ∗(v) = ηf ∗
1 (v) + (1 − η)f ∗

2 (v), η ∈ (0, 1) (13)

While f ∗
1 is of the form (12) with n = 2 (velocities pointing in coordinate

directions), f ∗
2 has the structure

f ∗
2 (v) =

(

1 − 1

σ2

)

δ(v) +
1

4σ2

4
∑

l=1

δ(v −
√

2σe′l),

with discrete velocities in diagonal directions

e′l =

(

cos
(

(l − 1
2
)π

2

)

sin
(

(l − 1
2
)π

2

)

)

.

The convex combination yields a symmetric f ∗ which satisfies the normaliza-
tion conditions (8). If η = 2

3
we even get isotropy (9) with λ = σ2/3.

3 Velocity distribution at low Mach numbers

In situations where the speed |u| of the flow is much smaller than the velocity
parameter c =

√

p/ρ, the distribution function

f(ρ, u; v) =
ρ

cd
f ∗
(v

c
− u

c

)

(14)

is only a small perturbation of

f(ρ, 0; v) =
ρ

cd
f ∗
(v

c

)

.

8
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For perfect gases, the parameterM = |u|/c is proportional to the Mach number

Ma =
|u|
cs

=
|u|√
γc

=
1√
γ
M.

For more general pressure laws where only p(0) = 0 and convexity of p is
assumed, we still have the relationship Ma ≤ M . The case M � 1 therefore
corresponds to small Mach number flows. The derivations in this section are
done for the isothermal case (γ = 1) where c = cs and Ma = M . We briefly
comment on more general laws at the end of the section.

To motivate the following low Mach number expansion of f(ρ, u; v) let us briefly
consider the case (12). With σ = 2, n = 3, f(ρ, u; v) is of the form

f(ρ, u; v) =
ρ

2
δ(v − u) +

ρ

12

6
∑

l=1

δ(v − (2csel + u)).

To investigate the Kinetic Scheme based on this velocity distribution we con-
sider how information is transported during the free flow step. After a time
4t the state at position x influences the points

x0 = x + 4tu, and xl = x+ 4t(2csel + u), l = 1, . . . , 6

or using the abbreviations 4x = 2cs4t and e0 = 0

xl = x + 4xel + 4x u

2cs
l = 1, . . . , 6.

In the case Ma = |u|/cs � 1, information is essentially transported to the
neighboring points x + 4xel on a hexagonal grid (see Figure 1) whereas for
Ma = O(1) an immediate correlation between the points xl and the grid is no
longer visible.

x∆

Figure 1: |u|/cs � 1 (left) and |u|/cs ∼ 1 (right)
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In other words, if |u|/cs ranges in the unit circle, information is transported
to any point of the right shaded area in Figure 2. The underlying hexagonal
structure is still visible but it becomes less and less important if we allow for
larger values of u/cs. Conversely, if u/cs → 0, it seems to be worthwhile to
use the emerging hexagonal structure in space.

Figure 2: Range of influence for varying u

The idea is to base the scheme on f(ρ, 0; v) so that information travels ex-
actly to neighboring points on the grid. The neglected small deviation due to
|u|/cs � 1 is taken into account by a polynomial perturbation. Altogether, f
will be replaced by h(ρ, u; v) = ω(u; v)f(ρ, 0; v) with a suitable v–polynomial
ω. In contrast to the original function f , the perturbation is non negative only
for a restricted velocity range. Also, the u dependence of the perturbation
no longer reflects translational invariance like the one of f . These disadvan-
tages, which are of minor importance for moderate flow situations at low Mach
numbers, are the prize to pay for the simplification of the scheme.

In the isothermal case, we have the following result:

If f ∗ is a non-negative symmetric measure on R
d which satisfies

(8) and (9) then a low Mach number approximation of f(ρ, u; v) =
ρf ∗((v − u)/cs)/c

d
s is given by

h(ρ, u; v) = ω(u; v)f(ρ, 0; v) (15)

with a polynomial

ω(u; v) = 1 +
u · v
c2s

+
1

2

(

1

λ

(u · v)2

c4s
− β

(

λ− 1

λ

|v|2
c2s

+ 2

) |u|2
c2s

)

(16)

10
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and β = 1/((d+2)λ−d). The new distribution function h satisfies

the moment conditions (6). If λ ≤ 1, h is non-negative provided

Ma2 =
|u|2
c2s

≤ 1

2β
. (17)

For λ > 1, non-negativity of h can only be obtained if f ∗ has a

bounded velocity support in |v| ≤ v
max

. Under this restriction we

find h ≥ 0 if

Ma2 ≤ 1

2

(

λ− 1

2λ
v2
max

(1 + β) + β

)−1

. (18)

For the Maxwellian (10) we have already mentioned that λ = 1 so that β = 1/2.
Consequently, the low Mach number approximation of the Maxwellian violates
the physical positivity restriction on particle distribution functions for Ma ≥ 1.
Practically, one observes instabilities of the Kinetic Scheme if h ≥ 0 is violated
so that the positivity considerations indicate the stability range of the scheme.

The construction of h is based on two requirements. First, h should satisfy
the moment conditions (6) so that it is applicable in Kinetic Schemes. Second,
integrals over h should be easy to evaluate so that the scheme can be efficiently
implemented.

Since the right hand sides of (6) involve at most quadratic expressions in u,
an expansion in u/cs up to second order around u = 0 leaves the right hand
sides unchanged. Consequently, the expansion of f(ρ, u; v) to the same order

g(ρ, u; v) =
ρ

cds

(

1 − uj
cs
∂wj

+
1

2

uiuj
c2s

∂wi
∂wj

)

f ∗(w)

∣

∣

∣

∣

w= v
cs

. (19)

still satisfies (6). A disadvantage of (19) is that derivatives of f ∗ are involved.
In particular, if f ∗ is not very regular, the expansion g has to be interpreted
as a generalized function. (For discrete measures like (12) or (13), g contains
derivatives of Dirac delta distributions.) In order to simplify the structure of
g, we use the observation that ∂wj

f ∗(w) acts exactly like −wjf ∗(w), at least on
second order polynomials (which are the most important test functions used
in the derivation of the Kinetic Scheme). Indeed, if

P (w) = a+ aiwi + aikwiwk, w ∈ R
d

is any quadratic polynomial we find with (8) and the symmetry of f ∗

〈

∂wj
f ∗(w), P (w)

〉

w
= −

〈

f ∗(w), ∂wj
P (w)

〉

w

= −〈f ∗(w), aj + (aij + aji)wi〉w = −aj.

11
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On the other hand,

〈wjf ∗(w), P (w)〉
w

= 〈f ∗(w), awj + aiwiwj + aikwiwjwk〉w
= 〈f ∗(w), aiwiwj〉w = aj.

Hence, for all quadratic polynomials P

〈

∂wj
f ∗, P

〉

w
= 〈−wjf ∗, P 〉

w
.

Similarly, we obtain with β = 1/((d+ 2)λ− d)

〈

∂wj
∂wi

f ∗, P
〉

w
=

〈(

1

λ
wiwj − β

(

λ− 1

λ
|w|2 + 2

)

δij

)

f ∗, P

〉

w

.

Using these representations in (19), we recover the distribution h(ρ, u; v) =
ω(u; v)f(ρ, 0; v) with ω of the form (16). The distribution h satisfies the mo-
ment conditions (6) since the same holds for g and only quadratic polynomials
are involved.

To check positivity of h, we start with the observation that

0 <
〈

f ∗(v), |v|4
〉

= 3dλ+ d(d− 1)λ = d(d+ 2)λ.

To show positivity of β we need the Schwarz inequality for the scalar product
(P,Q) −→ 〈f ∗(v), P (v)Q(v)〉v

d =
〈

f ∗(v), |v|2
〉

<
(

〈f ∗(v), 1〉
〈

f ∗(v), |v|4
〉)

1

2 =
√

d(d+ 2)λ.

Taking squares and dividing by d

1

β
= (d+ 2)λ− d > 0.

After regrouping (16) we obtain

ω(u; v) =
1

2
− β

|u|2
c2s

+
1

2

(

u · v
c2s

+ 1

)2

+
1 − λ

2λ

(

(u · v)2

c4s
+ β

|u|2|v|2
c4s

)

.

In the case 1 − λ ≥ 0 we see that ω(u; v) ≥ ω(u; 0). Requiring ω(u; 0) ≥ 0
then leads to the condition

Ma2 =
|u|2
c2s

≤ 1

2β
.

12
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For λ > 1 the situation is more complicated. Inserting a velocity vector which
is perpendicular to u 6= 0, we get

ω(u; v) = 1 − β
|u|2
c2s

(

1 +
λ− 1

2λ

|v|2
c2s

)

, v⊥u

which certainly becomes negative for very large |v|. However, the polynomial
ω is only used in conjunction with the distribution function f(ρ, 0; v). If f ∗ has
bounded support, say on |v| ≤ vmax, then f(ρ, 0; v) = ρ

cds
f ∗( v

cs
) is supported on

csvmax. Since (u · v)2 ≤ |u|2|v|2 we then get

(u · v)2

c4
+ β

|u|2|v|2
c4

≤ |u|2v2
max

c2
(1 + β) ,

so that ω(u; v) ≥ 0 provided |v| ≤ csvmax and

Ma2 ≤ 1

2

(

v2
max(λ− 1)

2λ
(1 + β) + β

)−1

.

We conclude the section by giving a few remarks. For more general pressure
laws than p(ρ) = c2sρ (isothermal case) a similar derivation can be carried out.
If the changes in c(ρ) =

√

p(ρ)/ρ are small with respect to a reference value c̄
we expand in u/c̄ around zero and in c around c̄. Since c enters quadratically in
the moment conditions (6) (via p = c2ρ), a second order expansion is sufficient.
We again obtain a polynomial perturbation of the form

ω̄(ρ, u; v)
ρ

c̄d
f ∗
(v

c̄

)

.

where ω̄ has the same form as (16) with c replaced by c̄ plus the additional
term

β

(

d− |v|2
c̄2

)(

1 − c(ρ)2

c̄2

)

.

If the full Euler system is considered, the additional energy variable gives rise to
another moment condition which involves a third order polynomial. However,
it is no problem to generalize the approach presented here also to that case.

4 Kinetic Schemes at low Mach numbers

To study the approximation properties of the Kinetic Scheme, we perform a
modified equation analysis [13]. The basic idea of this approach is the following:
the discrete evolution given by some approximation procedure typically devi-
ates from the actual evolution which is to be calculated. Hence, the equation

13
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satisfied by the approximation can be thought of as being the original equa-
tion plus a source term which describes the error production. The so obtained
modified equation obviously yields important information about the numeri-
cal scheme because (at least the lowest order term of) the error production is
included.

For the Kinetic Scheme (7) based on a distribution function h of type (15)
with isothermal pressure law we find

∂tρ + div(ρu) = 0,

∂t(ρuk) + div(ρuku) + c2s∂xk
ρ =

λ4tc2s
2

(ρ∆uk +Rk)
(20)

where

Rk =
1

λ

(

(2λ− 1)∂xk
div u+ (λ− 1)(uk∆ρ + 2 div(u∂xk

ρ))

− 1

c2s
∂xi
∂xj

(ρuiujuk)

)

. (21)

To check that (20) is the modified equation one has to show that the scheme
(7) with f replaced by h approximates the solution of (20) to second order in
4t. The necessary Taylor expansions are omitted for brevity. We just remark
that all time derivatives of the solution (ρ, u) of (20) can be expressed in terms
of space derivatives by using (20) which relates space and time derivatives. For
the expansion of the Kinetic Scheme (7) it is important to note that deriva-
tives with respect to 4t also lead to space derivatives (since h(x − v4t; v)
is the solution of the free transport equation ∂tF + v · ∇xF = 0 with ini-
tial value F (x, v, 0) = h(x, v) again time derivatives and space derivatives are
connected). Moreover, each time derivative produces a factor v because 4t
appears only in the form v4t. The corresponding v-integrals can then be
calculated due to our knowledge of the velocity moments of h.

To investigate the dependence on the Mach number, we scale x with a typical
length L, t and ∆t with T and u with L/T so that (20) turns into

∂tρ+ div(ρu) = 0,

∂t(ρuk) + div(ρuku) +
1

Ma2∂xk
ρ =

λ4t
2Ma2 (ρ∆uk +Rk)

(22)

14
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where Ma = L/(Tcs) and

Rk =
1

λ

(

(2λ− 1)∂xk
div u+ (λ− 1)(uk∆ρ + 2 div(u∂xk

ρ))

− Ma2∂xi
∂xj

(ρuiujuk)

)

. (23)

We now distinguish two limits. First, if Ma > 0 is fixed, then (22) converges
to the Euler system (2) in the limit 4t → 0. (Since (22) is just (2) with an
error production of order 4t, the Kinetic Scheme is first order consistent to
the Euler system if Ma is a fixed positive number.) If, however, the Mach num-
ber vanishes also in such a way that the quotient 4t/Ma2 converges to some
positive constant, the scheme is no longer consistent to the inviscid equations.
We investigate this second limiting case by considering the coupling

∆t =
2

λRe
Ma2 (24)

where Re > 0 is any positive value. Under the additional assumption that all
terms in the momentum equation of (22) are O(1) quantities we find ∇ρ =
O(Ma2). Hence, we can assume that ρ = ρ(0) + Ma2ρ̄ where ρ(0) is a constant
(say ρ(0) = 1) and ρ̄ and its derivatives are O(1). Inserting this ansatz into
equation (22), we find

div u = O(Ma2),

∂tuk + (u.∇)uk + ∂xk
ρ̄ =

1

Re
∆uk + O(Ma2).

(25)

(The additional term (23) is of order Ma2 because div u = O(Ma2) and all
derivatives of ρ are O(Ma2) by assumption.) We conclude that in the coupled
limit 4t/Ma2 → 0 the modified equation of the Kinetic Scheme is no longer a
perturbation of the isentropic Euler system (as for the simple limit 4t → 0).
Since O(Ma2) = O(4t), it turns out that the Kinetic Scheme approximates
the incompressible Navier-Stokes equation in that limit to first order in 4t.

5 Numerical examples

To calculate approximate solutions of the incompressible Navier–Stokes equa-
tion in two dimensions we will use a Kinetic Scheme based on (12) with n = 3

f ∗(v) =

(

1 − 2

σ2

)

δ(v) +
1

3σ2

6
∑

l=1

δ(v − σel). (26)

15
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el are unit vectors in the hexagonal directions

el =

(

cos
(

lπ
3

)

sin
(

lπ
3

)

)

, l = 1, . . . , 6

and σ2 > 2. f ∗ satisfies the moment conditions (8) and (9) with λ = σ2/4. To
simplify notation, we introduce vectors ci = csσei for i = 0, . . . , 6 where e0 is
the zero vector. The weights of the δ-measures in (26) are denoted

f ∗
0 = 1 − 2

σ2
, and f ∗

i =
1

3σ2
i = 1, . . . , 6

so that f(ρ, 0; v) = ρf ∗(v/cs)/c
2
s can be written in the form

f(ρ, 0; v) =
6
∑

i=0

ρf ∗
i δ(v − ci).

According to Section 3, a particle distribution based on f ∗ which works in the
low Mach number case can be written in the form h(ρ, u; v) = ω(u; v)f(ρ, 0; v)
so that

h(ρ, u; v) =

6
∑

i=0

hi(ρ, u)δ(v − ci) hi(ρ, u) = ρf ∗
i ω(u; ci). (27)

(Note that ω(u; v)δ(v − ci) = ω(u; ci)δ(v − ci).) In this example, the general
form (16) of ω simplifies to

ω(u; c0) = ω̃(µ; e0) = 1 − 1

σ2 − 2
|µ|2,

ω(u; ci) = ω̃(µ; ei) = 1 − 1

2
|µ|2 + σµ · ei + 2(µ · ei)2 i = 1, . . . , 6

where µ = u/cs. Since f ∗ is supported on a disk with radius σ, the considera-
tions in Section 3 yield positivity of h provided

Ma2 ≤ σ2 − 2

2
, 2 ≤ σ2 ≤ 4 (28)

respectively

Ma2 ≤ 1

σ2 − 3
, σ2 > 4.

16
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Plugging h into definition (7) of the Kinetic Scheme, we get
(

ρn+1(x)
ρn+1un+1(x)

)

=

〈

h(ρn(x− v4t), un(x− v4t); v),
(

1
v

)〉

v

=
6
∑

i=0

〈

δ(v − ci), hi(ρ
n(x− v4t), un(x− v4t))

(

1
v

)〉

v

=

6
∑

i=0

(

1
ci

)

hi(ρ
n(x− ci4t), un(x− ci4t))

Setting 4x = csσ4t we can write ci4t = ei4x so that information to update
the density in x is only taken from neighboring points in the hexagonal direc-
tions ei and distance 4x. In particular, no additional space discretization is
required if the data points are located on a hexagonal lattice. (Note that this
property is related to the structure of h and has been the main motivation for
the derivation in Section 3.) We also remark that the relation

∆x = σcs∆t

can be viewed as a CFL condition because σcs is the largest signal speed in
the process.

To write the final scheme in concise form, we first go over from density to
pressure by multiplying ρ with c2s. The values of pn and µn = un/cs in the
nodes xi of the hexagonal lattice are denoted ρni , µ

n
i and the neighboring points

of xi are abbreviated

xNil
= xi −4xel, l = 0, . . . , 6.

We end up with the scheme

pn+1
i =

6
∑

l=0

f ∗
l p

n
Nil
ω̃(µnNil

; el),

µn+1
i =

σ

pn+1
i

6
∑

l=1

f ∗
l p

n
Nil
ω̃(µnNil

; el)el.

A closer look at the structure of the scheme reveals that it is just a finite differ-
ence approximation. Each term in ω̃ corresponds to a discretized differential
operator. For example, the constant 1 in ω̃ yields an expression in the velocity
equation which approximates the pressure gradient

−∇p(xi, tn) ↔
6
∑

l=1

f ∗
l p

n
Nil
el.

17
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The relation is easily checked by a Taylor expansion around xi. Similarly, one
obtains the divergence term in the continuity equation from the linear terms
σµ · e in ω̃

− div(ρu)(xi, tn) ↔
1

3

6
∑

l=1

f ∗
l p

n
Nil
µnNil

· el

and the quadratic terms in ω̃ represent discretizations of the nonlinear con-
vective terms. It is interesting to note at this point that the five–velocity
distribution (12) with n = 2 (velocities in coordinate directions), which has
been fallen out of the considerations, would have given rise to standard central
differences for gradients and the usual five point stencils for the Laplacian.
The additional effort due to the bigger stencils (seven points in the hexagonal
case, nine points in case (13)) is not used to increase the accuracy since all
approximations are still second order accurate. It might however influence the
stability of the scheme which, after all, does not use grid staggering.

To apply the scheme to a given incompressible flow problem the Mach number
should be as small as possible, or equivalently, the sound speed cs should be
large. On the other hand, the choice of cs influences the resolution of the
scheme due to the coupling with the time step which is necessary to reproduce
the correct kinematic viscosity ν of the problem. Condition (24) in dimensional
quantities with λ = σ2/4 gives

∆t =
8ν

σ2c2s
. (29)

Finally, also the grid length 4x is coupled to cs via the CFL condition

∆x = σcs∆t =
8ν

σcs
. (30)

Altogether, the sound speed can be viewed as a parameter which controls the
precision of the scheme. Of course, the numerical cost grows with increasing
cs. If we count the time steps necessary to reach a characteristic time T and
multiply with the number of grid points in the computational domain of typical
length L, we can estimate the computing time

computing time ∼ T

∆t

L2

∆x2
∼ σ4Re3

Ma4 (31)

(we use Ma = L
Tcs

and Re = L2

Tν
). This estimate shows that the schemes are

restricted to moderate Reynolds numbers and that the Mach number cannot
be chosen too small. Of course, it is tempting to compensate high Re and small
Ma numbers with the parameter σ to reduce the numerical cost. However, in

18
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view of (28), positivity of the distribution function h requires σ2 to be larger
than 2(Ma2 + 1) which is of order one. Nevertheless, after choosing cs one
would pick σ close to its lower bound.

We note that a numerical cost like (31) is typical for explicit finite difference
schemes applied to convection diffusion problems. The discretization of the
viscous term usually gives rise to a stability bound of the form [23]

ν4t
4x2 = O(1)

and a CFL condition cs4t/4x = O(1) is necessary to obtain stability also
for convection. Combining the two requirements first yields ν/(cs4x) = O(1)
respectively 4x = O(ν/cs) which is exactly of the form (30). Inserting the
expression for 4x in the CFL condition then leads to 4t = O(ν/c2s) which
is nothing but (29). Altogether, the numerical cost calculated in (31) is not
only found for the Kinetic Scheme but is expected for any finite difference
scheme applied to compressible Navier Stokes equations in a low Mach number
situation.

In a concrete application, the given divergence free initial velocity field u0 is
scaled to obtain µ0 = u0/cs. Then, according to the constant density ρ of the
fluid, the average pressure is calculated by multiplying ρ with c2s. On fixed
solid boundaries the no slip condition gives rise to µ = 0. For pressure we use
Neumann conditions.

In a first example we consider Hagen Poiseuille flow in two dimensions. Along
an infinitely long channel of width W a pressure gradient is applied. It gives
rise to a stationary flow with a parabolic velocity profile which is stable for low
Reynolds numbers. If the channel stretches in x1 direction and the pressure
drop is ∆p on an x1 interval of length one then the solution has the form

u(x) =

(

u1(x2)
0

)

, u1(x2) =
∆p

2ρν
(W − x2)x2.

where ρ is the density of the fluid and ν the kinematic viscosity. In our
examples we use W = 1 and unit density ρ = 1. To simulate the infinitely long
channel, periodicity for the velocity is assumed at the numerical in and outflow
boundaries. The solution is considered stationary if the relative changes in the
maximal velocity are less than 10−6 over a period of 1000 time steps. Choosing
a pressure drop ∆p = 1 and ν = 0.1 the theoretical maximal velocity in the
channel is

umax =
W 2∆p

8ρν
= 1.25.

19
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A calculation with cs = 10 (and hence Ma ≈ umax/cs = 0.125) reproduces the
predicted parabolic shape within plotting accuracy (see Figure 3).
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Figure 3: Velocity profile across the channel

For different values of the sound speed cs the relative error in the maximal
velocity is determined. If the Mach number Ma is defined as the quotient
between the maximal velocity in the channel and cs then the error behaves
like O(Ma1.78) (taken from the doubly logarithmic plot in Fig. 4).
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Figure 4: Relative L
∞ error versus Mach number

Due to the CFL condition, ∆x is proportional to the Mach number and hence
the numerical order of convergence is 1.78 in space. Since ∆t is proportional
to Ma2 the convergence in time is approximately first order, as predicted in
Section 4.

In a second test case, we consider driven cavity flow. The incompressible fluid
is now bounded by a square enclosure with side length one. A translation

20
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of the top with unit velocity generates the fluid motion in the cavity which
shows certain vortex phenomena. The reason for choosing this test case is to
show that the method also works for more complicated flow simulations (note
that the pressure has singularities in the upper corners where the boundary
condition for the velocity is discontinuous).

Usually, numerical solutions of cavity flows in two dimensions are based on a
vorticity– stream function formulation of the problem. For comparison with
results from literature we therefore introduce the stream function ψ which is
defined through

u =

(

∂ψ

∂x2

− ∂ψ

∂x1

)

.

Hence, ψ is obtained by integrating u along curves and the value of the integral
is independent of the chosen curves only if the integrability condition

div u =
∂u1

∂x1
+
∂u2

∂x2
=

∂2ψ

∂x1∂x2
− ∂2ψ

∂x2∂x1
= 0

is satisfied. Conversely, if u is not divergence free, as in the case of the ap-
proximation obtained from the Kinetic Scheme, the stream function is, strictly
speaking, not well defined. Practically however, if div u is very small the de-
pendency on the chosen curves is small. A detailed analysis of this problem is
presented in [14] where the cavity flow is calculated with a Lattice Boltzmann
method. We will adopt the proposed form

ψ(x) =

∫ 1

0

u2(x) dx1

where the integral from the left to the right edge of the cavity is approximated
by a trapezoidal rule based on the given data. We present two results with
Re = 100 and Re = 400. In the first case the Mach number is chosen to be 0.045
and in the second case 0.2. The corresponding number of grids points on the
lower edge are 555 respectively 501. The calculations have been performed on
an nCUBE 2S with 64 processors. Due to the local structure of the algorithm
parallelization is extremely simple. Plots of the stream functions are given in
Figure 5 and 6.
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Figure 5: Re = 100 Figure 6: Re = 400

Strengths and positions of the primary as well as the secondary vortices co-
incide well with results obtained with other methods (taken from the list in
[14]). For comparison, we list the data in table i, ii, and iii. The last row in
each Re–block correspond to the results obtained with the Kinetic Scheme.

Re article ψmax x1 x2

100 [31] 0.1034 0.619 0.738
[10] 0.1034 0.617 0.734
[30] 0.1033 0.617 0.741
[14] 0.1030 0.620 0.737

0.1030 0.616 0.737
400 [31] 0.1136 0.556 0.600

[10] 0.1139 0.554 0.606
[30] 0.1130 0.557 0.607
[14] 0.1121 0.560 0.608

0.1123 0.555 0.605

Table i: Primary vortex

Re article ψmin x1 x2

100 [31] -1.94e-6 0.038 0.031
[10] -1.75e-6 0.031 0.039
[30] -2.05e-6 0.033 0.025
[14] -1.72e-6 0.039 0.035

-1.66e-6 0.030 0.040
400 [31] -1.46e-5 0.050 0.050

[10] -1.42e-5 0.051 0.047
[30] -1.45e-5 0.050 0.043
[14] -1.30e-5 0.055 0.051

-1.33e-5 0.050 0.047

Table ii: Lower left vortex
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Re article ψmin x1 x2

100 [31] -1.14e-5 0.938 0.056
[10] -1.25e-5 0.945 0.063
[30] -1.32e-5 0.942 0.050
[14] -1.22e-5 0.945 0.063

-8.30e-6 0.939 0.051
400 [31] -6.45e-4 0.888 0.119

[10] -6.42e-4 0.891 0.125
[30] -6.44e-4 0.886 0.114
[14] -6.19e-4 0.890 0.126

-6.11e-4 0.885 0.121

Table iii: Lower right vortex

Finally, we want to give a few remarks concerning the computational effort.
Since the restrictions on the time step are similar to those known for explicit
finite difference schemes, the Kinetic Scheme in its present form can certainly
not compete with implicit methods. Also, the kinematic viscosity restricts the
grid size in a way which is not acceptable in practice. By adding viscous terms
to the distribution function h, the latter problem can be removed. Also, the
critical pressure terms in the scheme can treated implicitly, giving rise to a
pressure correction method. While these modifications are presently studied,
the main idea of the considerations here is to analyze the behavior of Kinetic
Schemes in low Mach number situations. Moreover, as we will show in the
next section, the Kinetic Scheme in the present form gives some insight into
the Lattice Boltzmann method which has not been mentioned before.

6 Connection to LB methods

The Lattice Boltzmann (LB) approach is a relatively new method to study
transport phenomena like fluid motion governed by Navier–Stokes equations.
It relies on the observation that a simulation of a strongly simplified, micro-
scopic gas model can nevertheless reproduce a meaningful, macroscopic behav-
ior. Similar to classical discrete ordinate methods for the Boltzmann equation
[16], the microscopic velocities are restricted to a finite set. By discretizing time
and space compatibly to these velocities a simple, discrete dynamical system
is obtained. In a first approach, the Liouville equation for the discrete gas has
been solved directly, giving rise to so called lattice gas automata (LGA) [8, 9].
An advantage of these methods is the possibility of a very effective implemen-
tation on parallel computers. However, there are some inherent problems with
LGA which can be avoided by considering the Boltzmann equation for the
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model gas instead of the Liouville equation [20]. In particular, if the Boltz-
mann collision operator is replaced by a single relaxation time approximation
(BGK) the resulting method becomes very flexible [5, 25]. In the following,
we will show that these so called Lattice Boltzmann BGK models are closely
related to the Kinetic Scheme presented in Section 5.

To fix notation, let ci denote the discrete velocities in the model and fi(x, t)
the single–particle distribution function for the velocity ci at lattice node x
and time t. The Lattice Boltzmann BGK equation then has the form

1

∆t
(fi(x+ ci∆t, t + ∆t) − fi(x, t)) = −1

τ
(fi(x, t) − f eqi (x, t)) . (32)

A fundamental restriction on the velocities ci is their compatibility with a
regular space lattice in the sense that the lattice must be invariant under
∆tci–translations. The relaxation term on the right hand side is called BGK
collision operator. The time scale on which the collision term relaxes the
distribution function fi towards f eqi (the equilibrium distribution) is controlled
by the parameter τ > 0. Moreover, the conservation property

∑

i

(

1
ci

)

(fi − f eqi ) = 0 (33)

is assumed, which implies that density ρ and momentum ρu corresponding to
fi and f eqi coincide. It is therefore natural to assume that the (x, t)–dependence
of f eqi enters implicitly through the parameters

(

ρ
ρu

)

=
∑

i

(

1
ci

)

fi. (34)

Under certain assumptions on f eqi a Chapman Enskog expansion of (32) to-
gether with a low Mach number assumption shows that the average velocity u
defined in (34) is an asymptotic solution of the incompressible Navier Stokes
equation [14]. The viscosity turns out to be directly connected to the relaxation
parameter τ .

In order to relate the Lattice Boltzmann approach to Kinetic Schemes, we recall
that a Kinetic Schemes can be viewed as a sequence of free flow steps where,
at the beginning of each step, the constraint f(x, v, t) = h(ρ(x, t), u(x, t); v) is
enforced. Thus at time t + 4t, we have

f(x, v, t+ 4t) = h(ρ(x− v4t, t), u(x− v4t, t); v).
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If h is a discrete velocity distribution (like (27)), we find that also f is discrete

h(ρ(x− v4t, t),u(x− v4t, t); v)

=

6
∑

i=0

hi(ρ(x− ci4t, t), u(x− ci4t, t))δ(v − ci)

=

6
∑

i=0

fi(x, t + 4t)δ(v − ci).

and we can remove the fixed δ-measures in the description of the evolution

fi(x, t+ 4t) = hi(ρ(x− ci4t, t), u(x− ci4t, t)).

A change of variables x− ci4t 7→ x finally yields

fi(x+ ci4t, t+ 4t) = hi(ρ(x, t), u(x, t)).

Identifying f eqi with the equilibrium distribution hi(ρ, u) we see that the Ki-
netic Scheme can be regarded as LB method (32) with τ = 4t. (We remark
that the equilibrium distribution based on hi(ρ, u) from Section 5 has the same
form as the one described in [5] and that the approach in Section 3 based on
the nine velocity distribution (13) leads to the known square lattice method
[1, 14].) Conversely, the LB method can be considered as a linear combination
of a Kinetic Scheme and a free flow solver. Indeed, using the splitting

fi(x + ci∆t, t + ∆t) =

(4t
τ

+

[

1 − 4t
τ

])

fi(x + ci∆t, t+ ∆t)

in the LB evolution (32) we find the equivalent formulation

(

1 − 4t
τ

)

(fi(x+ ci∆t, t + ∆t) − fi(x, t))

+
4t
τ

(fi(x+ ci∆t, t + ∆t) − f eqi (x, t)) = 0. (35)

Only in the case τ = 4t, the evolution is exactly equal to the one of the
Kinetic Scheme. Since

fi(x + ci∆t, t+ ∆t) − fi(x, t) = 0

yields the exact solution to the free flow problem ∂tfi + ci · ∇fi = 0, the other
contribution to (35) can be interpreted as a free flow solver. In any case,
the Kinetic Scheme is an important building block of the Lattice Boltzmann
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method. Since it works directly on the variables (ρ, u) of the problem (and is
actually a finite difference scheme for (ρ, u) as described in Section 4), this part
of (35) is well understood. The free flow part, however, introduces variables
which do not have a direct counterpart in the actual Navier Stokes problem
(there are, for example, seven occupation numbers fi in the hexagonal case
versus three variables ρ, u1, u2 in the equations).

7 Conclusion

We have investigated how Kinetic Schemes for the isentropic Euler system be-
have in the case of low Mach numbers. It turns out that they approximate
solutions of the incompressible Navier–Stokes equation where the Reynolds
number is controlled by the limit of the ratio 4t/Ma2. To enhance the per-
formance of the scheme the freedom in the choice of the microscopic velocity
distribution is used. In particular, discrete distribution functions which are ex-
panded at low Mach numbers lead to simple schemes which can be regarded as
explicit finite difference discretizations. Since the Lattice Boltzmann method
can be written as a linear combination of a Kinetic Scheme and a free flow
solver, the investigations also give a new perspective on LBM.

In the present form, the numerical cost of the Kinetic scheme in 2D grows
with Re3 so that applications are practically restricted to moderate Reynolds
numbers. Also, compressibility effects cannot be arbitrarily reduced because
the Mach number, which should be as small as possible, enters like Ma−4 in the
numerical cost. These restrictions, however, are to be expected for any explicit
finite difference scheme applied to compressible Navier–Stokes equations in a
low Mach number case (and also for LBM due to its closeness to Kinetic
Schemes). Modifications of the presented scheme to remove the restrictions
coming from the purely explicit treatment as well as the correlation between
grid size and Reynolds number are possible and will be considered in future
work. The often quoted advantage of LBM to be easily parallelizable also
applies to the Kinetic scheme in the present form. In fact, it holds for any
explicit finite difference scheme.
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