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Abstract

Diffusion equation posed on a high dimensional space may occur as a sub-problem
in advection-diffusion problems (see [1] for a specific application). Although the
transport part can be dealt with the method of characteristics, the efficient simu-
lation of diffusion in high dimensions is a challenging task. The traditional Monte
Carlo method (MC) applied to diffusion problems converges and is N−1/2 accurate,
where N is the number of particles. It is well known that for integration, Quasi-
Monte Carlo (QMC) outperforms Monte Carlo in the sense that one can achieve
N−1 convergence, up to a logarithmic factor. This is our starting point to develop
methods based on Lécot’s approach [2], which are applicable in high dimensions,
with a hope to achieve better speed of convergence. Through a number of numeri-
cal experiments we observe that some of the QMC methods not only generalize to
high dimensions but also show faster convergence in the results and thus slightly
outperform standard MC.

Key words: QMC, diffusion equation, MC

1 Introduction

In a variety of physical applications, there is a need to simulate plain diffusion
problems posed on high dimensional spaces. Generally, diffusion problems are
encountered as sub-problems while solving more complicated ones. Refer [1]
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for one such occurance, where it is of interest to simulate plain diffusion in
order to carry out the splitting method for a high-dimensional Fokker-Planck
equation. By high dimensions we mean dimensions of the order of 50.

Traditional methods like finite differences etc., are not applicable in high di-
mension since the number of node points needed to achieve a prescribed accu-
racy grows exponentially with the dimension. This is referred to as the curse

of dimension [3]. The famous approach which breaks this curse is the Monte
Carlo method where the error estimate in terms of the number of nodes N goes
like 1/

√
N , independent of the dimension. Other methods which are known to

avoid the curse of dimension at least in high-dimensional integration problems
are quasi-Monte Carlo (QMC) methods [4] and sparse grid method [5].

Following the quasi-Monte Carlo approach, the idea is to replace Monte Carlo
points by well determined sequences (quasi-random points) which are better
uniformly distributed than the former. Though this change works for plain
integration and order close to 1/N can be achieved, it cannot be simply applied
to particle simulations (see [6]). This is due to the correlation among the quasi-
random points. This problem was first studied by Lécot [7], for the spatially
homogeneous Boltzmann equation and he gave a convergence proof when the
quasi-random points were used. The idea of Lécot was to renumber the particle
positions at each time step to break the correlations. Morokoff and Caflisch [6],
applied this technique to solve the heat equation in one and two dimensions
and they obtained significant improvement over the standard Monte Carlo
approach. However, for the high dimensional case, the idea of reordering was
not clear.

Lécot [2], introduced a sorting algorithm which was adaptable to higher di-
mensions and also shuffled the particle positions at each time step. The sorting
was done with respect to each coordinate of the particle position and conver-
gence was proved for any dimension s. For the simple diffusion problem, there
was some improvement achieved over the standard Monte Carlo method only
in one and two dimensions. The method however had a drawback, namely, the
particle numbers were drastically increasing. For a problem in s dimensions,
a Faure generator of base b, the least prime ≥ 2s, was taken. The minimal
particle number was then bs if sorting is to be done in each coordinate. To be
concrete, for the case s = 10, the base b is 23 and the minimal particle number
is of the order 2310(≈ 1013) which leads to an enormous memory requirement.

Thus there is a quest for a QMC method which would be applicable in real
high dimensions and hopefully to have a better convergence order than MC.
In this article, we present modifications of the algorithm presented in [2],
which work with low particle numbers and thus can be applied in high di-
mensions. One such algorithm is to reorder the particle position only with
respect to the first coordinate which allows us to work with an s dimensional

2



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

sequence instead of an 2s dimensional one and get a low minimum particle
number. In this case, the possible particle numbers that can be considered
for the case s = 10 are 11, 112, 113, . . .. Even for s = 100, the possible par-
ticle numbers 101, 1012, 1013, . . . are still reasonable. Apart from the drasti-
cally reduced memory requirement, the modified ordering has the advantage
of increased speed and in total the proposed algorithm slightly outperforms
standard Monte Carlo for the diffusion equation.

The paper is organized as follows. Section 2 outlines the various methods in
detail followed by section 3 on numerical results.

2 The methods

We are interested in the numerical simulation of

∂ψ

∂t
= ∆ψ, ψ(Q, 0) = ψ0(Q) (1)

Since (1) is posed on a very high dimensional space, we are using particle
methods for the numerical approximation. The basic idea in this approach is
to relate the unknown function ψ to the measure ψdQ and to approximate
ψdQ by a discrete measure,

ψdQ ∼ 1

N

N
∑

i=1

δQ(i) . (2)

The quality of such an approximation is measured using a quantity called the
discrepancy (refer [4] for details). The idea is to compare both measures on
a sufficiently large collection of sets and to take the maximal difference to
quantify the approximation error. Specifically, if X is a point set consisting
of Q(1), . . . ,Q(N), as in (2), then its discrepancy with respect to a set family
B is

DB(X, ψ) = sup
B∈B

∣

∣

∣

∣

∣

1

N

N
∑

i=1

δQ(i)(B)−
∫

B
ψ(Q)dQ

∣

∣

∣

∣

∣

. (3)

An example for B which is used later is

B =

{

(−∞,ω) =
s
∏

i=1

(−∞, ωi)
∣

∣

∣ ω ∈ � s

}

. (4)

This is the family of left open boxes in
� s and in this case the discrepancy

is called the star discrepancy denoted by D∗(X, ψ). For Q(i) ∈ [0, 1]s =: Is,
we set D∗(X) := D∗(X, χ), where χ is the characteristic function of Is. Since
QMC sequences are constructed to minimize the discrepancy, they are also

3
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known as low discrepancy sequences. The term “approximating by point mea-
sure” is synonymous with sampling, usually encountered in statistical appli-
cations.

Once we adopt this measure theoretic approximation of ψ, we have to translate
the dynamics described by (1) in the framework of the particles Q(i) which
fully determines our approximation. The details are given in the following
subsections.

2.1 Approximation of the initial value: inversion method

The initialization step of every particle simulation is the particle approxima-
tion of the initial value. For our diffusion equation (1), we shall later employ
the Gaussian initial condition:

ψ0(Q) = (2π)−s/2 exp(−|Q|2 /2) (5)

We now describe one of the commonly used techniques, the inversion method
[8], to generate this point measure. According to this method, let 1

N

∑N
i=1 δyi

be
a measure approximation of the characteristic function on (0, 1). Utilizing the
points yi, one can generate a measure approximation 1

N

∑N
i=1 δxi

, of a function
ψ ≥ 0 with

∫

ψ = 1, using the cumulative distribution function

F (x) =
∫ x

−∞
ψ(γ)dγ,

by solving the equation F (xi) = yi. Since F (x) is a monotonically increasing
function, the existence of an inverse is assured. Evaluating the approximating
measure on general intervals (−∞, x), x ∈ �

, we find,

1

N

N
∑

i=1

δxi
(−∞, x) =

1

N

N
∑

i=1

δF−1(yi)(−∞, x)

=
1

N

N
∑

i=1

δyi
(0, F (x)) ≈

∫ F (x)

0
1dγ =

∫ x

−∞
ψ(γ)dγ. (6)

Since intervals (−∞, x) generate the Borel σ-algebra, (6) shows the approxi-
mation property.

Following the inversion technique, we construct a particle approximation of
the Gaussian initial value by setting,

Q
(i)
k = H−1(y

(i)
k ), i = 1, . . . , N, k = 1, . . . , s

4
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where H is the cumulative distribution function of the scalar Gaussian

H(x) =
1

2

(

1 + erf

(

x√
2

))

where erf(z) =
2√
π

∫ z

0
e−t2dt (7)

and
1

N

N
∑

i=1

δy(i) is a measure approximation of the indicator function of the

s-dimensional unit cube Is. This yields,

Q
(i)
k =

√
2 erf−1(2y

(i)
k − 1).

As before, one can check the approximation property by evaluating the mea-
sure on a general multidimensional interval (−∞,x) = (−∞, x1) × · · · ×
(−∞, xs).

Although, the inversion method is not economical for sampling Gaussian ini-
tial values, it has its advantages over the traditional Box-Mueller method,
especially for the simulation of diffusion (refer [6] pp. 1569 - 1571 for details).

2.2 Diffusion

Let us suppose that we have approximated the initial value ψ0 by ψ̃0 =
1

N

N
∑

i=1

δ
Q

(i)
0

. Knowing that the solution of (1) at time ∆t is given by the con-

volution of the initial value ψ0(Q) with the fundamental solution

G∆t(Q) =
1

(4π∆t)s/2
exp

(

−|Q|
2

4∆t

)

,

it is natural to use the convolution with ψ̃0, leading to

ψ1(Q) =
∫

�
s
G∆t(Q−X) dψ̃0(X) =

1

N

N
∑

i=1

G∆t(Q−Q
(i)
0 ).

Since ψ1 is a continuous function, an additional measure approximation

ψ1dQ ≈ ψ̃1 =
1

M

M
∑

i=1

δ
Q

(i)
1

(8)

is needed to come back to a particle formulation. Since the quality of such
a measure approximation is assessed in terms of the discrepancy, we have to
find points Q

(i)
1 such that

∫

B
ψ1(Q) dQ ≈ 1

M

M
∑

i=1

δ
Q

(i)
1

(B)
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for all sets B from a sufficiently large class. Introducing the characteristic
function of the set B as a test function ϕ, we thus consider

∫

�
s
ϕ(Q)ψ1(Q)dQ =

∫

�
s

∫

�
s
ϕ(Q + X)G∆t(Q)dQ dψ̃0(X).

In order to simplify the measure G∆t(Q)dQ, we use the transformation

Y = H
(

Q/
√

2∆t
)

,where H(z) = (H(z1), . . . , H(zs))

with H given by (7), which has Jacobian G∆t(Q). Finally, we get

∫

�
s
ϕ(Q)ψ1(Q)dQ =

∫

Is

∫

�
s
ϕ
(√

2∆tH−1(Y ) + X
)

dψ̃0(X) dY . (9)

If (Xk,Y k), k = 1, . . . ,M defines a reasonable point-measure approximation
of the product measure dψ̃0(X) dY , then

∫

�
s
ϕ(Q)ψ1(Q)dQ ≈ 1

M

M
∑

k=1

ϕ
(

Xk +
√

2∆tH−1(Y k)
)

which motivates us to define

ψ̃1 =
1

M

M
∑

k=1

δ
Q

(k)
1
, Q

(k)
1 = Xk +

√
2∆tH−1(Y k). (10)

Consequently, the problem to set up a particle method for the diffusion equa-
tion reduces to finding a good point-measure approximation for the product
dψ̃0(X) dY between a point measure ψ̃0 and the Lebesgue measure on the
s-dimensional unit cube.

2.2.1 Direct approximation of the product measure

Unfortunately, the most natural approach to the approximation of the product
measure does not lead to a practicable program. The idea is to use a measure
approximation of the characteristic function on Is which yields, for example,
N ′ points Y j ∈ Is. Combining these points with the points Q

(i)
0 that make

up the measure ψ̃0, we obtain M = NN ′ pairs (Q
(i)
0 ,Y j). The discrepancy

of this construction is easily determined from the discrepancies of the partic-
ipating point-measure approximations. However, we end up with M = NN ′

particles after the first time step. So after k time steps the particle number is
N(N ′)k, which is enormously large even for reasonable values of k, leading to
an impracticable algorithm.

6
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2.2.2 Monte Carlo approach

If we assume that Q
(i)
0 are obtained as independent realizations of a ran-

dom variable with distribution ψ0 then we can construct a reasonable product
measure by taking N independent realizations Y i of an s-dimensional uni-
form distribution in Is and forming the pairs (Q

(i)
0 ,Y i), i = 1, . . . , N . These

pairs can then be regarded as realizations of the product measure ψ0dQdY
and, consequently, can be used as point approximation. Note that the particle
number stays constant in this approach. We want to stress that the indepen-
dence of the participating random variables is the most important ingredient
here. While this can be achieved with pseudo random points, it is generally
not available with QMC points.

To exemplify this situation, we consider problem (1) with initial condition
(5) in a single space dimension. According to our algorithm, we sample a
set of N particles according to the initial condition. The update rule (10)
then implies that the particle positions are incremented each time step by
N (0,∆t) distributed random numbers (according to the inversion method,√

2∆tH−1(Y k) produces such points if Y k is uniformly distributed in (0,1)).
Figure 1 shows the result of the simulation using 1000 MC points at time
T = 1.0 doing 50 time steps. If we simply replace MC points by QMC points,
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Fig. 1. Solution of diffusion problem (solid) and MC approximation (dashed dot).

we do not obtain the expected result as shown in figure 2. This is because of
the non-independence (correlation) among the QMC points which spoils the
convergence and can be explained with the following argument, taken from
[6]. Assume we had taken N as a power of two and used the van der Corput
sequence,

(xn) =

(

1

2
,
1

4
,
3

4
,
1

8
,
5

8
,
3

8
,
7

8
,

1

16
,

9

16
,

5

16
,
13

16
, . . .

)

7



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

−5 5

PSfrag replacements

-10 10
0

0

0.4

0.3

0.2

0.1

Fig. 2. MC approach with QMC points.

Then all the odd numbered particles would always get a positive increment
and all the even numbered particles would get a negative increment, thereby
the particles drift away deterministically.

2.2.3 A QMC approach: quasi-random mixing

Since the concept of independence is not available in connection with the
deterministic QMC sequences, a different approach is required in order to
stay with a fixed number of particles. In the following, we generalize the idea
in [2]. To derive a particle approximation of the product measure, let us take
a test function φ :

� s × Is → �
on the product space and consider

∫

Is

∫

�
s
φ(X,Y ) dψ̃0(X) dY =

N
∑

i=1

∫

Is

1

N
φ(Q

(i)
0 ,Y ) dY .

If we tessellate the r-dimensional unit cube Ir into N disjoint sets of equal
volume 1/N , and if we denote the characteristic function of set i by χi, we
can write

∫

Ir
χi(λ)dλ =

1

N
,

respectively

∫

Is

∫

�
s
φ(X,Y ) dψ̃0(X) dY =

N
∑

i=1

∫

Is

∫

Ir
χi(λ)φ(Q

(i)
0 ,Y ) dλdY .

8
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Hence, if (λk,Y k), k = 1, . . . , N is a low discrepancy approximation of the
characteristic function on Ir+s, then

N
∑

i=1

∫

Is

∫

Ir
χi(λ)φ(Q

(i)
0 ,Y ) dλ dY ≈ 1

N

N
∑

i=1

N
∑

k=1

χi(λk)φ(Q
(i)
0 ,Y k). (11)

Observe that each λk is located in exactly one set of the tessellation, so that the
double sum in (11) actually involves at most N non-zero terms. Introducing
the mapping σ : {1, . . . , N} → {1, . . . , N} which assigns to each k the index i
for which χi(λk) = 1, we can write

1

N

N
∑

i=1

N
∑

k=1

χi(λk)φ(Q
(i)
0 ,Y k) =

1

N

N
∑

k=1

φ(Q
(σ(k))
0 ,Y k).

Since σ is generated by the quasi-random vector λk, it acts like a quasi-random
mixing of the N points Q

(i)
0 and the N points Y k. The mapping σ is even

invertible (i.e. a permutation) if we assume that each set of the tessellation
contains exactly one point λk. In this case, the particle approximation of the
product measure is given by

(Q
(i)
0 ,Y σ−1(i)), i = 1, . . . , N.

The idea of having in each set of the tessellation exactly one λk can be achieved
using the concept of (0, m, s+ r)-nets defined below. See [4] for details.

Definition 1 A (0, m, s + r)-net in base b is a point set P consisting of bm

points in Is+r such that every elementary interval E of the form

s+r
∏

i=1

[

aib
−di , (ai + 1)b−di

)

, ai, di ∈
�

0, ai < bdi ,
s+r
∑

i=1

di = m

with volume b−m contains exactly one point.

Using this notation, we choose r-dimensional intervals for our tessellation of
Ir

Ia =
[

a1b
−d1 , (a1 + 1)b−d1

)

× · · · ×
[

arb
−dr , (ar + 1)b−dr

)

,

where a = (a1, . . . , ar). If N = bm and d1 + · · ·+ dr = m, the sets are clearly
of volume 1/N . By the property of (0, m, s+ r) nets, the elementary intervals
Ia × Is contain exactly a single point (λk,Y k), which implies that in each Ia

there will be exactly one point λk.

2.2.4 The QMC approach of Lécot

While the quasi-random mixing introduced in the previous section may break
some of the correlations among the points Q

(i)
0 and Y i, it generally does not

9
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guarantee a sufficient approximation quality for the product measure. Observe
that the approximation of the product measure appears in (11) where the
integral over Ir+s is replaced by a sum using the points (λk,Y k). In principle,
the numerical error in this approximation can be estimated by the Koksma-
Hlawka inequality [4], according to which, this error is bounded by the product
of the discrepancy of the point set used and the variation of the function which
is integrated, i.e.

(λ,Y ) 7→ FN(λ,Y ) =
N
∑

i=1

χi(λ)φ(Q
(i)
0 ,Y ).

While the discrepancy of a set (Y k, λk), k = 1, . . . , N can be chosen essentially
of order O(1/N), the function FN turns out to be quite rough with a varia-
tion of O(N). Hence, a direct application of the Koksma-Hlawka inequality
gives no information about the convergence of (11) for large N . In [2], the
approximation (11) is therefore split into two approximations. Before using
the discrepancy estimate, an auxiliary function F̃N is constructed which has
less variation (O(Nβ), β < 1) than FN . If this function is used instead of FN ,
one finds two error contributions

∫

Ir+s
FN dλ dY ≈

∫

Ir+s
FN − F̃N dλ dY +

1

N

N
∑

k=1

F̃N (λk,Y k).

While the error in the measure approximation can now be made essentially of
order Nβ−1, the integral error gives rise to N−α depending on how well F̃N ap-
proximates FN in � 1. Balancing the two errors leads to an overall convergence
proof but the order is clearly less than in a pure QMC integral approximation.
In the proof presented in [2], the construction of F̃N requires a multidimen-

sional sorting of the points Q
(i)
0 which is combined with an s-dimensional

mixing (i.e. r = s in the previous section).

The sorting is based on the numbers d1, . . . , ds (where N = b
∑

i
di) which are

also used to describe the number bdi of subintervals into which the coordinate
direction i is divided to form the tessellation of Is. An s-dimensional sorting
of the points Q

(i)
0 is then achieved by first sorting with respect to the first

coordinates of the points. In the resulting sorted list, consecutive groups of
bd2+···+ds particles are formed in which sorting is performed with respect to
the second coordinate. After that, the list is split into smaller groups of length
bd3+···+ds which are sorted with respect to the third coordinate and so on. In
this way, the particle which used to have number i gets the new number τ(i)
where τ is a permutation of {1, . . . , N}. Afterwards, the permutation τ due
to sorting is combined with the one due to mixing which yields the pairs

(Q
(τ−1(i))
0 ,Y σ−1(i)), i = 1, . . . , N.

Using this approximation of the product measure, the convergence of the dif-

10
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fusion algorithm can be proved (see [2]). If X (r) is the point set consisting
of Q(1)

r , . . . ,Q(N)
r , which are the positions of the particles at time T = r∆t,

and ψr is the exact solution of the Cauchy problem for pure diffusion at time
T = r∆t, then the discrepancy error can be estimated as

D∗(X (r);ψr) ≤ D∗(X (0);ψ0) + bd1+···+ds−1+bds/2c
r−1
∑

i=0

D∗(Y (i))

+ r
(

1

bd1
+ · · ·+ 1

bds−1
+

1

bbds/2c

)

(12)

where, D∗(Y (i)), i = 0, . . . , r − 1 is the star discrepancy of the (0, m, 2s)-net
Y (i) in base b, the least prime ≥ 2s.

In order to conclude that the error vanishes for N →∞, we see from the last
term on the right that all the dis must increase as we make N larger. Taking
this fact into account, and since we are dealing with the isotropic diffusion
problem, let us set, for example, all the dis equal. If we assign di = 2k, i =
1, . . . , s, then the term 1

bbds/2c essentially dictates the order of convergence

of the method. Now, N = bd1+···+ds = b2ks, so that, bk = N1/2s. Hence the
estimate only guarantees a very low order of convergence like N−1/2s. However,
as we will demonstrate in the numerics section, the scheme behaves much
better in practice and actually outperforms the basic Monte Carlo approach.
The only drawback is the required minimal particle number which is quite
large as has been explained already in the introduction.

It is also evident from (12) that the estimate fails on setting one or more of
the dis to zero. To be concrete, if we set d1 = 0, then from (12), it is clear
that the last term on the right has a leading term r, and this does not go to
zero as N →∞. Nevertheless, the scheme works remarkably well even in the
case where we set d2 = · · · = ds = 0, with the additional advantage that much
smaller minimal particle numbers are possible.

2.2.5 A QMC approach: sorting

As we have seen, both mixing and sorting introduce permutations and the
question arises whether the two permutations are equally important for the
approximation of the product measure. We therefore also consider the case in
which only sorting is used. For the 1d case, Morokoff [6] sorted the particle
positions at every time step and obtained significant improvement over stan-
dard MC. As a generalization of the previous case, we allow for r-dimensional
sorting for which we choose r out of the s coordinate directions and sort in
the same manner as described above based on the numbers e1, . . . , er with the
property that be1+···+er = N . In the extreme case r = 1, this means that we
simply sort with respect to a single coordinate of the points Q

(i)
0 . The results

11
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of the simulation in this case for the one dimensional example of Section 2.2
are better than plain MC as depicted below in figure 3.
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Fig. 3. Solution of the diffusion problem (solid). MC approximation (left figure with
dashed dot curve) and QMC approximation with sorting (right figure with dashed
curve).

Our motivation for the sorting idea is based on the following result, which
shows, at least in the two dimensional case, that sorting is a reasonable ap-
proach for the construction of product measure.

Lemma 2 Let S be an arbitrary sequence of points x0, x1, . . . in I. For N ≥ 1,
let P be the point set consisting of (xn, yn)N−1

n=0 in I2, where Y = (yn)N−1
n=0 is a

(0, m, 1)-net in base b sorted in ascending order. Then

ND∗
N (P ) ≤ max

0≤M≤N−1
MD∗

M (S) + 1 (13)

Remark 3 Observe that if S is a low discrepancy sequence of points, then
D∗

M(S) essentially behaves like 1/M , up to a logarithmic factor and hence
the right hand side of (13) is O(1). Dividing (13) by N , it then follows that
D∗

N(P ) is O(1/N) up to a logarithmic factor.

PROOF. Let J = [0, u1) × [0, u2) := J1 × J2. If A(J ;P ) is the counting
function that indicates the number of n with 0 ≤ n ≤ N −1 for which xn ∈ J ,
then we need to estimate

|A(J ;P )−Nλ2(J)|,

where λ2 is the two dimensional Lebesgue measure.

Observe that (xn, yn) ∈ J if and only if xn ∈ J1 and yn ∈ J2. Since Y is a

12



 preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --   preprint  --  

(0, m, 1)-net in base b, every elementary interval

Ei = [i/N, (i+ 1)/N), i = 0, . . . , N − 1

contains exactly one point. Since u2 ∈ [0, 1), there exists M ∈ Z+ such that

M

N
≤ u2 ≤

M + 1

N
(14)

Depending upon whether u2 < yM or u2 ≥ yM , A([0, u2), Y ) is either M or
M + 1 respectively. We consider the two cases separately.

Let u2 < yM , so that A([0, u2), Y ) = M . Then

|A(J ;P )−Nλ2(J)| = |A([0, u1);SM)−Nλ2(J)|

where SM is the point set x0, . . . , xM−1. On using triangle inequality we find,

|A(J ;P )−Nλ2(J)| ≤ |A(J1;SM)−Mλ1(J1)|+ |Mλ1(J1)−Nλ2(J)|

and hence on taking the supremum over u1 and u2 we get

ND∗
N (P ) ≤ max

0≤M≤N−1
MD∗

M (S) + |Mu1 −Nu1u2| (15)

Multiplying (14) by Nu1, we can estimate

0 ≤ Nu1u2 −Mu1 ≤ u1 < 1

and (13) follows.

For the other case u2 ≥ yM , we have A([0, u2), Y ) = M + 1. So

|A(J ;P )−Nλ2(J)| ≤ |A(J1;SM+1)−(M + 1)λ1(J1)|+|(M+1)λ1(J1)−Nλ2(J)|

where SM+1 is the point set {x0, . . . , xM+1}. Hence, as before,

ND∗
N(P ) ≤ max

0≤M≤N−1
MD∗

M (S) + |(M + 1)u1 −Nu1u2| (16)

Again from (14), we have |(M +1)u1−Nu1u2| ≤ u1 and thus (13) follows. 2

The requirement that Y be a (0, m, 1)-net in base b can be replaced by the
assumption that it is a general sorted point set. Given a u2 ∈ [0, 1), there
exists an index M such that yM ≤ u2 and yM+1 > u2. Then, if J2 = [0, u2),
we have A(J2;Y ) = M points of Y in J2 and

|M −Nu2| = |A(J2;Y )−Nλ1(J2)| ≤ ND∗
N (Y ).

13
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For any u1 ∈ [0, 1), we conclude

|Mu1 −Nu1u2| ≤ u1ND
∗
N (Y ) ≤ ND∗

N (Y )

which can be used in (15). Thus we have proved the following.

Theorem 4 Let S be an arbitrary low discrepancy sequence of points x0, x1, . . .
in I. For N ≥ 1, let P be the point set consisting of (xn, yn)

N−1
n=0 in I2, where

Y = (yn)
N−1
n=0 is a point set sorted in ascending order. Then

ND∗
N (P ) ≤ max

0≤M≤N−1
MD∗

M (S) +ND∗
N(Y )

Again by arguments of remark 3, we find that P inherits the discrepancy order
of S and Y .

2.2.6 General structure of the diffusion algorithm

Obviously, all the practicable algorithms presented above can be summarized
as follows: to construct a product measure approximation of dψ̃0(X) dY , the
N pairs

(Q
(τ−1(i))
0 ,Y σ−1(i)), i = 1, . . . , N (17)

are used. In case of MC, both permutations are given by the identity and the
particle approximations are based on independent (pseudo) random numbers.
Otherwise, for the QMC generated points, the permutation τ is obtained by
a sorting of the particle positions and σ by a quasi-random mixing. If either
of the steps is dropped, the corresponding permutation can be taken as the
identity. Referring back to (10), the approximation (17) leads to the following
algorithm for the movement of the particles in the first time step

Q
(i)
1 = Q

(i)
0 +

√
2∆tH−1(Y σ−1(τ(i))), i = 1, . . . , N. (18)

Note that this update rule is quite similar to an explicit Euler discretization
with time step ∆t, of the stochastic differential equation, (refer [9])

dQ =
√

2 dW t (19)

where W t is a standard Wiener process, because H−1(Y σ−1(τ(i))) is a measure
approximation in sampling of the standard normal distribution.

2.3 The algorithms

In the previous subsections, we have seen how to interpret the dynamics of
equation (1) in the framework of particles. In every time step, the particles

14
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reach an intermediate stage Q
(i)
n′+1/2, i = 1, . . . , N (due to sorting), which is

then followed by diffusion which completes one cycle (mixing of the particles
may give rise to a second intermediate stage).

Our notation for the different type of algorithms will be as follows: the al-
gorithm with σ = τ = id and particle approximations based on independent
(pseudo) random numbers is called MC. The name QMC(r, 0) with 1 ≤ r ≤ s
stands for the algorithm with r-dimensional mixing and no sorting. Similarly,
QMC(0, r) indicates the algorithm with no mixing but r-dimensional sorting
and QMC(l, r) represents the algorithm where both mixing and sorting is per-
formed in l and r of the s dimensions respectively. For example, QMC(s, s)
is the algorithm proposed in [2] where both sorting and mixing is done in
all the coordinates. QMC(0, 1) would be an algorithm where only sorting is
performed along one coordinate. The algorithm QMC(1, 1) has been studied
in [10]. It involves sorting and mixing along a single coordinate.

We remark that a full description of the algorithms QMC(0, r), QMC(r, 0),
and QMC(l, r) actually requires the specification of the numbers d1, . . . , dl

and e1, . . . , er (see Sections 2.2.3 and 2.2.5). Among other things, this choice
determines the possible particle numbers N with which the algorithm can
operate. Given a base b (in our examples this will be the least prime ≥ s + l
for the algorithm QMC(l, r) in dimension s), the particle numbers have to be
of the form bm with m ≥ max(l, r). Note that the choice of the dis and eis are
not unique.

Example 5 As an example, consider the algorithm QMC(2, 3) in dimension
s = 5. In this case, the base b is the least prime ≥ 5+2 and hence b = 7. As a
possible way to define a sequence of the parameters d1, d2 and e1, e2, e3 to get
an increasing sequence of particle numbers, we mention

e1 e2 e3 N = b
∑

ei

1 1 1 343

2 1 1 2401

2 2 1 16807

2 2 2 117649

3 2 2 823543

d1 d2

2 1

2 2

3 2

3 3

4 3

The complete algorithm for the diffusion equation can be summarized as fol-
lows.

15
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Algorithm QMC(l, r)

(1) Input s, 1 ≤ m ∈ � , ∆t and T

(2) Choose b, the least prime ≥ s + max(l, r) and set N = bm

(3) Approximate the initial value, ψ0dQ ≈
1

N

N
∑

i=1

δ
Q

(i)
0

(4) Initialize n′ ← 0

(5) WHILE (n′∆t < T )
{

(a) Construct the permutation τ (by sorting if r > 0). Set up

Q
(i)
n′+1/2 = Q

(τ−1(i))
n′

(b) Diffusion

Construct the permutation σ (by mixing if l > 0) using λk

from a (0, m, s+ l)-net (λk,Y k), k = 1, . . . , N

FOR k = 1, N
Q

(σ(k))
n′+1 = Q

(σ(k))
n′+1/2 +

√
2∆tH−1(Y k)

END
(c) n′ ← n′ + 1

}

2.4 Applicability of the QMC(l, r) algorithm

In general, the applicability of the QMC(l, r) algorithm in dimension s is
restricted by memory limitations and this forces the choice of l and r to be
as small as possible for large values of s. Following algorithm QMC(l, r), the
possible particle numbers are bm, bm+1, bm+2, . . ., where b is the least prime
≥ s + l and m = max(l, r). In order to find the order of convergence of the
method, a minimum of three data sets relating particle numbers and absolute
errors are required and this forces us to work with bm+2 particles. To store the
bm+2 particle positions (in double precision) in dimension s, a total memory
of bm+2 · s · sizeof(double) is required. Bounding this quantity by the total
available memory Tmem yields the condition

bm+2 · s · sizeof(double) ≤ Tmem.

Table 1 summarizes the maximum applicable dimension s for various values
of l and r, assuming the available memory to be 1.5GB.

16
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l = 0 l = 1 l = 2 l = 3 l = 4 l = 5 l = 6 l = 7

r = 0 112 41 20 9 6 1 0

r = 1 113 112 41 20 9 6 1 0

r = 5 10 10 9 8 7 6 1 0

r = 10 3 2 1 0 0 0 0 0

r = 15 2 1 1 0 0 0 0 0

r = 20 2 1 0 0 0 0 0 0

r = 25 1 1 0 0 0 0 0 0

r = 26 0 0 0 0 0 0 0 0

Table 1
Maximum applicable dimension s for a given value of l and r, given Tmem= 1.5GB

3 Numerical results

In this section we summarize the results of various numerical simulations that
have been carried out using different approaches. We mainly compare the
computations based on straightforward MC algorithm (MC without variance
reduction etc.,) with the algorithms outlined in the previous section. All the
computations are done on a AMD Athlon 1400 MHz machine with 1.5GB
memory running Debian Linux 3.0. The CPU time we shall refer to is as
measured on this machine. The complete implementation is done in ANSI C
language.

In our computations we take as (0, m, s+ l)-net in base b the Faure sequence
[11]. The fast Faure generator implementation is due to Eric Thiémard [12]
based on the idea presented in [13], which requires only O(ms) time compared
to O(m2s) proposed in [4,11,14]. For the Monte Carlo simulation, we use the
Unix inbuilt random number generator function drand48. For sorting, we use
the quicksort algorithm proposed by Hoare [15].

This section is organized as follows. In the first part we review the better
accuracy of QMC over MC in sampling initial values. The second part deals
with the problem of plain diffusion in high dimensions.

3.1 Initial sampling

As a first task, we compare the time taken by the Faure generator and the ran-
dom generator to sample particles distributed according to standard normal
distribution in various dimensions. We use the inversion technique outlined

17
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in subsection 2.1 for sampling. It is clear from figure 4 that there is a small
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Fig. 4. Time taken to sample particles distributed according to standard normal for
dimensions s=3 to s=60. The stars correspond to MC whereas the circles correspond
to QMC.

overhead involved in generating Faure points especially in high dimensions.

Having seen that it is slightly slower to generate and use QMC points, we now
show that they approximate the sampled function better than MC points.
Consistent with later use, we consider sampling from the standard normal
distribution ψ0. In order to calculate numerically the discrepancy introduced
in (3), we take as B in (4), a set Bl of 10000 boxes (−∞,ω), where the
components of ω are normally distributed with mean 3 and variance 1. If X (0)

is the point set consisting of Q(1), . . . ,Q(N), sampled according to standard
normal, a parameter α is fit in such a way that DBl

(X (0), ψ0) = CNα, in the
sense of least squares. We see from figure 5 that the order of convergence of
QMC is significantly better than MC.

Remark 6 It is to be observed that the rate of convergence we get by the least
squares fit is dependent heavily on the data under consideration. Especially
for the strongly fluctuating results obtained with MC and QMC, an extra data
point can either improve or worsen the order of convergence considerably.

For the data set presented in figure 6 for example, the order of convergence is
reduced by including the error value corresponding to the largest particle num-
ber. Since the particle numbers cannot be freely chosen in our QMC algorithm
for diffusion problems, the size of the data set used for fitting is eventually
restricted by memory limitations. Thus the estimated convergence order is not
of high precision and it should just give an indication of the general behavior
of the algorithm.
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Fig. 5. Initial sampling error. Value of α in MC (stars) and QMC (circles) simulations
for dimensions s=3 to s=18, restricting to a maximum of 106 particles. The line
indicates the average order of convergence over dimension.
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Fig. 6. The data set is represented by stars. The least square fit of the data is shown
by the dashed line and the same for the data without the last point included is
shown by the solid line. The data corresponds to the case s = 12 in figure 5 for
QMC.

3.2 Plain diffusion

We now consider the Cauchy problem (1) with ψ0(Q) = π−s/2 exp(−|Q|2).
The exact solution for this problem can be written down as the convolution
of the Gauss kernel Gt(Q) with the initial value ψ0(Q). Thus

ψ(Q, t) =
1

(π(1 + 4t))s/2
exp

(

− |Q|
2

1 + 4t

)

(20)
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We now compare the various QMC methods outlined in the previous section
with Monte Carlo. The first aspect in this regard would be to check the accu-
racy of the methods. With the same notion of discrepancy used in subsection
3.1, we calculate α for different dimensions taking 100 time steps of 0.0001
each.

Method s = 3 s = 6 s = 9 s = 12 s = 50

MC -0.2698 -0.2538 -0.2862 -0.2765 -0.2946

QMC(1, 1) -0.4517 -0.4162 -0.5299 -0.4757 -0.6106

QMC(0, 1) -0.5662 -0.5407 -0.5783 -0.5542 -0.6070

QMC(1, 0) -0.00002 -0.0002 -0.0001 -0.0001 -0.00008

QMC(s, s) -0.4555 NA NA NA NA

QMC(0, s) -0.2149 NA NA NA NA

QMC(s, 0) -0.1715 NA NA NA NA

QMC(3, 2) -0.1699 -0.4100 -0.2268 -0.4627 NA

Table 2
Order of convergence α for the various methods. NA refers to non applicability due
to memory restrictions.

From table 2, we conclude that algorithm QMC(0, 1) outperforms the others.
One can also observe that algorithm QMC(1, 1) performs well with the only
disadvantage of extra mixing time. Algorithm QMC(1, 0) does not converge
at all implying that sorting is essential for convergence and is in accordance
with [6].

The anomaly in performance of QMC(3, 2) in dimension s = 3 and s = 9 is
due to the fact that the error corresponding to large particle numbers does
not drop considerably. This is depicted in figure 7. In view of remark 6, we
stress the fact that, more than the order of convergence, the absolute error
should be taken into consideration. A closer look into figure 7 reveals that even
though the order of convergence of QMC(s, 0) and QMC(3, 2) algorithms in
dimension s = 3 are poor, the absolute error is still quite less compared to
MC. A similar conclusion can be drawn for the case s = 9.

Looking at table 2, we conclude that the only applicable algorithms in higher
dimensions are MC, QMC(1, 1) and QMC(0, 1). A comparison of the absolute
error for these methods is given in figure 8. Again, the QMC algorithms show
significantly less error compared to the corresponding MC result.

Regarding the computational time we start with a comparison of MC and
QMC(0, 1) again doing 100 steps of 0.0001 each. It is clear from figure 9 that
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Fig. 7. QMC(s, 0) data (stars), QMC(3, 2) data (circles) and MC data (plus) for
dimensions s = 3 (left ) and s = 9 (right). The least square fit is depicted by line for
QMC(s, 0), by dashed line for QMC(3, 2) and MC by dashed dot line respectively.
It may be observed that QMC(s, 0) results does not seem to converge.
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Fig. 8. Absolute error for MC data (plus), QMC(1, 1) data (circles) and QMC(0, 1)
data (stars) for dimensions s = 9 (left) and s = 12 (right). The least square fit is
depicted by dashed dot line for MC, solid line for QMC(1, 1), and dashed line for
QMC(0, 1).

MC is faster compared to QMC(0, 1) especially in high dimensions. A time
comparison between the various QMC algorithms is not so straightforward,
because the methods work on completely different particle numbers. For ex-
ample, for a problem in s dimension, QMC(0, 1) works on an s dimensional
Faure sequence in base b, the least prime number ≥ s, whereas for QMC(s, s),
Faure sequence of dimension 2s in base b, the least prime ≥ 2s is consid-
ered. So we cannot estimate the time required to carry on the computation
with a fixed number of particles. However, in order to have an idea about the
computational time, we compare the time taken for the sorting step.

From figure 9 (right), it is clear that multi-index sorting, which is applicable
only up to space dimension s=6 due to memory restrictions, takes consid-
erably much more time compared to sorting only along one dimension. The
percentage of sorting time in QMC(0, 1) can be estimated by comparing the
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Fig. 9. (Left)CPU time required by MC (stars) and QMC(0, 1) (circles) in carrying
out a single step of plain diffusion for dimensions s=3 to s=21, excluding the gen-
eration time. (Right) Sorting time for QMC(0, 1) (circles) and QMC(s, s) (stars)
algorithms.

left and right pictures in figure 9 (around 6%). Since the mixing part takes
very less time compared to sorting, the computational time for the QMC(0, 1)
and QMC(1, 1) algorithms are almost the same.

4 Conclusion

The superiority of QMC over MC in plain integration is well known and is
again verified in section 3.1. The better order of convergence (eventually 1/N
versus 1/

√
N) however, does not carry over to plain diffusion problems due to

the correlation among QMC points.

It can in general be observed from the numerical experiments, that QMC(0, 1)
and QMC(1, 1) algorithms have better order of convergence compared to MC
algorithm. Although the straightforward MC algorithm takes less time com-
pared to QMC(0, 1) (and QMC(1, 1) since mixing does not add considerably
to the total CPU time), since considerably more particles have to be consid-
ered in order to obtain a prescribed accuracy, we conclude that there is some
improvement achieved over the simple MC method.

Finally, the purpose of this paper is the development of a QMC algorithm
which is applicable in high dimensions and its comparison with the simplest
MC algorithm. Currently efforts are on in proving the convergence of the
QMC(0, 1) algorithm.
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