
 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

A QMC Approach for High Dimensional

Fokker-Planck Equations Modelling Polymeric

Liquids

G. Venkiteswaran a,∗, M. Junk b

aGraduiertenkolleg Mathematik und Praxis, Universität Kaiserslautern

67653 Kaiserslautern, Germany

bFachbereich Mathematik, Universität des Saarlandes

66041 Saarbrücken, Germany

Abstract

A classical model used in the study of dynamics of polymeric liquids is the bead-
spring chain representation of polymer molecules. The chain typically consists of
a large number of beads and thus the state space V of its configuration, which is
essentially the position of all the constituent beads, turns out to be high dimen-
sional. The distribution function governing the configuration of a bead-spring chain
undergoing shear flow is a Fokker-Planck equation on V. In this article, we present
QMC methods for the approximate solution of the Fokker-Planck equation which
are based on the time splitting technique to treat convection and diffusion sepa-
rately. Convection is carried out by moving the particles along the characteristics
and we apply the algorithms presented in [1] for diffusion. Altogether, we find that
some of the QMC methods show reduced variance and thus slightly outperform
standard MC.

Key words: QMC, diffusion equation, MC, Fokker-Planck equation

1 Introduction

In the present work we consider a Fokker-Planck equation which arises in
connection with a mathematical model of dilute polymeric solutions. Such
solutions show interesting non-Newtonian behavior like shear rate dependent

∗ Corresponding author.
Email addresses: gvenki@mathematik.uni-kl.de (G. Venkiteswaran),

junk@num.uni-sb.de (M. Junk).

Preprint submitted to Elsevier Science

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

viscosity, rod climbing etc., (see [2] for a comprehensive list). Our aim is to
calculate the material functions namely, the viscosity and the normal stress
difference which are responsible for the dynamic behavior of dilute polymeric
solutions.

The polymer model we use is the bead-spring chain, also called the Rouse chain
[3], in which sub-strings of the polymer molecules are represented by beads (see
figure 1) and interactions are indicated by connecting springs (even though
a more complicated interaction potential is employed). The configuration of
such a chain is described by specifying all the connector vectors Qi = ri+1−ri,
i = 1, . . . , n− 1, where rν, ν = 1, . . . , n are the position vectors of the beads.
Since each of the vectors Qi has three components, the configuration space
is

� 3(n−1). For reasons of simplicity and clarity, we shall henceforth denote
3(n − 1) by s. With n = 20, for example, the dimension of the configuration
space is s = 57. The special case n = 2 is often referred to in the literature as
dumbbell.

��

PSfrag replacements

n

1

2

µO

Q
µ

rµ+1

rµ

r2

rµ

Fig. 1. Rouse model of a bead-spring chain.

The type of flow often used to characterize polymeric liquids is the shear flow
whose linear velocity field is given by

v(x) = κx, κ = β

0 1 0

0 0 0

0 0 0

, (1)

where β is the constant shear rate. The solvent is considered to exert a drag
force, and a random Brownian force on the chain, and the chain is considered
to interact with itself through a potential which consists of two contributions, a
quadratic attractive part that prevents the beads of the chain from going very
far apart, and a Gaussian repulsive part called the excluded volume potential
[4], that resists any pair of beads from coming very close to each other.

As the bead-spring system moves in the flow and there are random forces,
the exact configuration of the system cannot be determined, but rather only
a probabilistic estimate can be given. This probability, which describes the

2

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

likelihood of finding the chain near a particular configuration Q is given by
ψ(t,Q)dQ, where the density ψ is the so called configurational distribution
function. In a dilute polymeric solution with a large number of non-interacting
chains, the measure

∫

C
ψ(t,Q)dQ specifies the percentage of chains having a

configuration Q in a subset C of
� s. According to [3], the distribution function

is governed by a Fokker-Planck equation of the following non-dimensionalized
form

∂ ψ

∂t
= −

n−1
∑

j=1

∂

∂Qj

·
(

κ Qj −
1

4

n−1
∑

k=1

Ajk
∂φ

∂Qk

)

ψ+
1

4

n−1
∑

j, k=1

Ajk
∂

∂Qj

· ∂ψ
∂Qk

(2)

where,

• ∂/∂Qj· denotes divergence with respect to Qj and ∂ψ/∂Qk the Qk gradient.
• κ is the gradient of the solvent velocity field (see (1)).
• The (n− 1)× (n− 1) matrix A is the Rouse matrix, defined by,

Aij =

2 if |i− j| = 0

−1 if |i− j| = 1

0 otherwise

(3)

• The quantity φ is the total potential energy of the bead-spring chain,

φ(Q) =
1

2

n−1
∑

i=1

Qi ·Qi +
1

2

z

d3

n
∑

µ,ν=1
µ6=ν

exp

(

−1

2

r2
µν(Q)

d2

)

. (4)

Here, rµν is the magnitude of the vector rµν = rµ − rν , connecting the
pair of beads µ and ν. The parameter d controls the extent of the repulsive
potential, and z describes its strength.

We shall later employ different initial conditions to determine the steady state
solution of (2).

The stress tensor τ = τ s + τ p characterizing the flow behavior of polymeric
liquids consists of two contributions namely, one from the solvent τ s, and the
other from the polymer τ p. The rheological properties of the polymer solution
can be obtained by calculating the polymer contribution to the stress tensor,
which is given by Kramers expression [3],

τ p = −
n−1
∑

j=1

∫

�
s

Qj ⊗
∂φ

∂Qj

ψ∞dQ. (5)

where ψ∞ is the stationary solution of (2). The two important rheological
properties of a dilute polymer solution, undergoing simple shear flow, are the

3

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

viscosity η and the first normal-stress-difference coefficient Ψ given by

η = −τ
p
xy

β
, Ψ = −τ

p
xx − τ p

yy

β2
. (6)

Numerically, the material functions η and Ψ are calculated at every time step
till steady state is reached. A typical plot of viscosity and first normal stress
difference coefficient is as shown in figure 2, taken from the dumbbell case
s = 3 (n = 2). At this point, we wish to stress that the physically relevant

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

η

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Time

Ψ

Fig. 2. Typical plot of viscosity (left) and first normal stress difference coefficient
(right) versus time for the dumbbell case s = 3 (n = 2).

information which can be drawn from the computations are the stationary
values. This is due to the fact that the Kramers expression (5) is only valid for
the stationary case. Nevertheless, the time evolution of the integral functional
(5) gives an idea of the dynamical behavior of the Fokker-Planck equation. For
example, one can see a dimensional dependence: while in low dimensional cases
the curves are monotonically increasing, in the higher dimensional case there
is an initial spike in the values of viscosity and first normal stress difference
coefficient as can be seen from figure 3. This just means that one needs to run
the simulation considerably longer till the stationary values are obtained.

Note that the Cauchy problem for (2) has to be solved on
� 3(n−1) and with

n = 20, being a typical number of beads, this amounts to a Fokker-Planck
problem on

� 57. The aim of this paper is to present fast and accurate methods
that are applicable to such high-dimensional problems.

The paper is organized as follows. Section 2 outlines the various methods
followed by section 3 on numerical results.

4

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

0 50 100 150 200
5

10

15

20

25

30

35

Time

η

0 100 200 300 400 500
0

100

200

300

400

Time

Ψ

Fig. 3. Plot of viscosity (left) and first normal stress difference coefficient (right)
versus time showing stationary situation in the case of 8 beads (s = 21).

2 The methods

It can be easily seen from (2) that the Fokker-Planck equation consists of an
advective term as well as a diffusive term. In order to simulate such a process
numerically, we shall split the convection part and the diffusion part so that
the approximate solution of the original problem is written as a composition
of the solution operators of the sub-problems. Time is discretized in steps of
∆t. The splitting algorithm for (2) proceeds in several parts.

2.1 Change of coordinates

Since the Rouse matrix (3) is diagonalizable, the second order operator appear-
ing in (2) can actually be transformed onto a Laplacian. The (n− 1)× (n− 1)
orthogonal matrix Ωij which diagonalises Aij is given by

Ωij =

√

2

n
sin

ijπ

n
, i, j = 1, . . . , n− 1 (7)

and satisfies the relation

n−1
∑

j=1

n−1
∑

k=1

ΩjiAjkΩkl = alδil (8)

where ai = 4 sin2(iπ/2n) are the eigenvalues of Aij. If we denote the matrix
alδil by D, then the last relation can be written as

ΩTAΩ = D

5

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

Since D is a diagonal matrix, we have

(

Ω
√
D

−1
)T

A

(

Ω
√
D

−1
)

= I (9)

Now, the transformation Z = 2Ω
√
D

−1
actually transforms A into

n−1
∑

j=1

n−1
∑

k=1

ZjiAjkZkl = 4 δil (10)

and also satisfies
n−1
∑

k=1

ZkjZki = 4
δji
aj

Introducing the new variables Q∗

j , j = 1, . . . , n− 1, by

Q∗

j =
n−1
∑

k=1

ZjkQk (11)

we obtain the transformed equation,

∂ψ

∂t
= −

n−1
∑

j=1

∂

∂Q∗

j

·
(

κQ∗

j −
∂φ

∂Q∗

j

)

ψ +
n−1
∑

j=1

∂

∂Q∗

j

· ∂ψ
∂Q∗

j

. (12)

The form of the stress tensor however remains unchanged by this transforma-
tion.

For ease of notation, we shall supress the stars in the vectors Q∗

j . Then, the
structure of (12) leads us to consider initial value problems for advection
equation,

∂ψ

∂t
+

n−1
∑

j=1

∂

∂Qj

·
(

κQj −
∂φ

∂Qj

)

ψ = 0 (13)

and the diffusion equation

∂ψ

∂t
=

n−1
∑

j=1

∂

∂Qj

· ∂ψ
∂Qj

(14)

separately. In the splitting approach, the approximate solution of (12) at time
∆t is obtained by first solving (13) for a time ∆t, feeding the result into (14)
and solving (14) again up to t = ∆t.

Since (13) and (14) are posed on a very high dimensional space, we are us-
ing particle methods for the numerical approximation. The basic idea in this
approach is to relate the unknown function ψ to the measure ψdQ and to

6

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

approximate ψdQ by a discrete measure,

ψdQ ∼ 1

N

N
∑

i=1

δQ(i) . (15)

The next step is then to translate the dynamics described by (13) and (14) in
the framework of the particles Q(i) which fully determines our approximation.
The details are given in the following subsections.

2.2 Approximation of the initial value

The initialization step of every particle simulation is the particle approxima-
tion of the initial value. For our Fokker-Planck equation (12), we shall later
employ several initial conditions:

• (SN) ψ0(Q) = (2π)−s/2 exp(−|Q|2 /2)
• (DD) ψ0(Q) = δ0

• (EQ) ψ0(Q) = Neq exp (−φ), with φ as in (4) (refer [3]).

The abbreviations SN, DD and EQ stand for standard normal, Dirac delta
and equilibrium distribution respectively.

The approximation of (DD) is the most simple where we just initialize N
particles with the configuration vector zero, that is, all beads are in the same
position. In this case, repulsion will be dominant in the initial phase of the
evolution. For the case (SN), we employ the inversion method (see [1] or [5])
which is applicable in this case since the cumulative distribution function is
available and is easily invertible. However, this is not the case for the most
physical condition (EQ) which describes the equilibrium state of the polymeric
liquid without a shear flow. In this situation we resort to the acceptance-
rejection technique [5]. Accordingly, the required dominating function is taken
as

Neq exp
(

−|Q|2 /2
)

≥ ψ0(Q) (16)

where Neq is estimated by a numerical evaluation. It may be noted that this
method is generally slow in the sense that one needs to produce a large number
of points in order to qualify a few of them.

2.3 Convection

The result of the initial sampling step is a set of particle positions approxi-
mating the initial value. In order to carry out convection, we transport each

7

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

of the particles along the characteristics. If we set

C = κQj −
∂φ

∂Qj

(17)

then (13) can be written as

∂ψ

∂t
+ div (Cψ) = 0 (18)

We now move the particles along the characteristics of (18) given by the
solution of Q̇ = C(Q). Using explicit Euler discretization leads us to

Q
(i)
k+1 = Q

(i)
k + ∆tC(Qk), i = 1, . . . , n. (19)

For a similar approach, we refer to [6].

It may be noted that the evaluation of C requires the evaluation of ∂φ/∂Qj

and from expression (4), it is clear that this involves high computational cost
for a system with a large number of beads. We shall later see that the transport
part constitutes a major portion of the computational time.

2.4 Diffusion

In this subsection, we mainly recapitulate the various algorithms presented
in [1] for the simulation of diffusion. In [1], at each time step, the particle
positions were first sorted and later incremented in a quasi-random way. The
sorting introduced a permutation τ and the quasi-random incremental step
gave rise to another permutation σ. Accordingly the one step movement of
the particles is given by

Q
(i)
k+1 = Q

(i)
k +

√
2∆tH−1(Y σ−1(τ(i))), i = 1, . . . , N. (20)

where H(z) = (H(z1), . . . , H(zs)) with H given by

H(x) =
1

2

(

1 + erf

(

x√
2

))

where erf(z) =
2√
π

∫ z

0
e−t2dt (21)

and
1

N

N
∑

i=1

δY i
is a measure approximation of the indicator function of the

s-dimensional unit cube.

8

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

2.5 General structure of the Fokker-Planck algorithm

In the previous subsections, we have seen how to interpret the dynamics of
equation (13) and (14) in the framework of particles. In every time step,
at the end of the convection step, the particles reach an intermediate stage
Q

(i)
n′+1/3, i = 1, . . . , N , which is then followed by diffusion which completes one

cycle (sorting of the particles may give rise to a second intermediate stage

Q
(i)
n′+2/3).

Our notation for the different type of algorithms will be as in [1] with the
only difference that also the convection step is included. The algorithm with
σ = τ = id and particle approximations based on independent (pseudo) ran-
dom numbers is called MC. The name QMC(r, 0) with 1 ≤ r ≤ s stands for the
algorithm with r-dimensional mixing and no sorting. Similarly, QMC(0, r) in-
dicates the algorithm with no mixing but r-dimensional sorting and QMC(l, r)
represents the algorithm where both mixing and sorting is performed in l and
r of the s dimensions respectively. For example, QMC(s, s) is the algorithm
proposed in [7] where both sorting and mixing is done in all the coordinates.
QMC(0, 1) would be an algorithm where only sorting is performed along one
coordinate and QMC(1, 1) involves sorting and mixing along a single coordi-
nate.

To summarize the results of [1], it is observed that only QMC(0, 1) and
QMC(1, 1) are the algorithms which have faster convergence than MC and
are applicable in high dimensional cases. In what follows, we shall mainly use
the QMC(1, 1) algorithm.

The complete algorithm for the Fokker-Planck equation can be summarized
as follows.

9

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

Algorithm QMC(l, r)

(1) Input n, 1 ≤ m ∈ Z, ∆t and T

(2) Set s = 3(n−1) and choose b, the least prime ≥ s+max(l, r); N = bm

(3) Approximate the initial value, ψ0dQ ≈
1

N

N
∑

i=1

δ
Q

(i)
0

(4) Initialize n′ ← 0

(5) WHILE (n′∆t < T)
{

(a) Transport all the N particles along the integral curves of C

FOR i = 1, N
Q

(i)
n′+1/3 = Q

(i)
n′ + ∆tC (i)(Qn′)

END
(b) Construct the permutation τ (by sorting if r > 0). Set up

Q
(i)
n′+2/3 = Q

(τ−1(i))
n′+1/3

(c) Diffusion

Construct the permutation σ (by mixing if l > 0) using λk

from a (0, m, s+ l)-net (λk,Y k), k = 1, . . . , N

FOR k = 1, N
Q

(σ(k))
n′+1 = Q

(σ(k))
n′+2/3 +

√
2∆tH−1(Y k)

END
(d) n′ ← n′ + 1

}

The applicability of QMC(l, r) is restricted by memory limitations (refer sec-
tion 2.4 of [1]) and it is henceforth clear that only very small values of l and r
allow us to work in high dimensions and this is especially true for the polymer
model described earlier.

3 Numerical simulation of Fokker-Planck equation

In this section we summarize the results of various numerical simulations that
have been carried out using different approaches. We mainly compare the
computations based on straightforward MC algorithm (MC without variance
reduction etc.,) with the algorithms outlined in the previous section. All the
computations are done on a AMD Athlon 1400 MHz machine with 1.5GB
memory running Debian Linux 3.0. The CPU time we shall refer to is as
measured on this machine. The complete implementation is done in ANSI C
language.

10

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

In our computations we take as (0, m, s+ l)-net in base b the Faure sequence
[8]. The fast Faure generator implementation is due to Eric Thiémard [9] based
on the idea presented in [10], which requires only O(ms) time compared to
O(m2s) proposed in [11,8,12]. For the Monte Carlo simulation, we use the
Unix inbuilt random number generator function drand48. For sorting, we use
the quicksort algorithm proposed by Hoare, [13].

We are interested in the steady state solution of (12) subject to a suitable
initial condition in order to evaluate the polymer contribution to the stress
tensor given by (5) and calculate the viscosity η and first normal stress differ-
ence coefficient Ψ given by (6).

3.1 Fixation of parameters

First we study the dependence of the steady state values of η and Ψ on the
initial conditions. We consider the three different initial conditions outlined
in subsection 2.2. We recall that the abbreviations SN, DD and EQ stand for
standard normal, Dirac delta and equilibrium distribution respectively. From

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

η

PSfrag replacements

EQ

SN

DD

0 2 4 6 8 10
−0.5

0

0.5

1

1.5

2

2.5

Time

Ψ

PSfrag replacements

EQ

SN

DD

Fig. 4. Non-dimensional viscosity (left) and first normal stress difference coefficient
(right) for different choices of initial condition for the case of dumbbell s = 3 (n = 2)
with z = 0.1, β = 1.0 and d = 0.5.

figures 4 and 5, it is clear that, as expected, the convergence is not affected by
the choice of initial conditions. But a careful examination shows that steady
state is attained ahead of time in the case of choice (SN) and (EQ) compared
to (DD). The only disadvantage of choice (EQ) is that, many particles should
be produced before a required number is selected. In the case of dumbbells
only 10% of the particles are accepted on an average. So we conclude that
(SN) is the optimal choice both accuracy wise and computational cost wise.

11

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

0 50 100 150
0

5

10

15

20

25

30

35

Time

η

PSfrag replacements

EQ

SN

DD

0 50 100 150
0

50

100

150

200

250

300

350

400

Time

Ψ

PSfrag replacements

EQ

SN

DD

Fig. 5. Non-dimensional viscosity (left) and first normal stress difference coefficient
(right) for choices (SN) and (DD) of initial condition for the case s = 21 (n = 8)
with z = 0.1, β = 1.0 and d = 0.5.

Since we are interested in the steady state values of the viscosity and the first
normal stress difference coefficient, we would now study the influence of the
time step on the stationary value of QMC(1, 1). We take as test case the chain
with 5 beads (s = 12) and 134 (28561) particles. Three different time steps,
namely 0.01, 0.1 and 1.0 are considered. From figure 6, it is evident that the
difference in the values obtained using ∆t = 0.1 and ∆t = 0.01 is less than
1%. Also the case ∆t = 0.01 takes ten times more time compared to ∆t = 0.1.
In view of these facts, we conclude that it is judicious to consider ∆t = 0.1
for the simulations.

40 45 50 55
6

6.5

7

7.5

8

8.5

Time

η

∆ t = 1.0

∆ t = 0.1

∆ t = 0.01

40 45 50 55
57

58

59

60

61

62

Time

Ψ

∆ t = 1.0

∆ t = 0.1

∆ t = 0.01

Fig. 6. Time accuracy of the scheme for calculating viscosity (left) and first normal
stress difference coefficient (right) with z = 0.1, β = 1.0 and d = 1.0.

12

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

Having studied the time dependence with a fixed number of particles, we
now study the dependence of the viscosity and first normal stress difference
coefficient on the sample size. We consider the dumbbell case and march with
a time step of 0.1 till time T = 10.0 with 55, 56 and 57 particles. It can be seen

2 4 6 8 10

1

1.02

1.04

1.06

1.08

1.1

Time

η

N=78125

N=3125

N=15625

4 5 6 7 8 9 10

2

2.02

2.04

2.06

2.08

2.1

2.12

2.14

2.16

2.18

2.2

Time

Ψ N=15625

N=78125

N=3125

Fig. 7. Dependence of viscosity (left) and first normal stress difference coefficient
on the sample size for the case s = 3 (n = 2) with z = 0.1, β = 1.0 and d = 0.5.

from figure 7 that as the particle number increases, the oscillations decline in
magnitude and steady state is attained ahead in time.

3.2 Comparison of methods

Now that we have fixed the initial condition, we have all the ingredients to
compare MC with QMC methods. Figure 8 (left) shows the viscosity obtained
in a single run, using MC and the figure in the middle shows the same using
QMC(1, 1). It is clear that the QMC(1, 1) trajectory has less oscillations com-
pared to the MC trajectory, meaning that one has to average MC over several
runs to obtain a similar result. The average values obtained from the three
separate runs of MC is shown in figure 8 (right).

Note that we have restricted the η scale to show the behavior more clearly in
the stationary part of the curve. A similar behavior is observed also in the case
of first normal stress difference coefficient. For a single run with 134 (28561)
particles, the Monte Carlo method took 3.7 seconds whereas QMC(1, 1) took
about 4 seconds on an average for a single time step. Since we need to average
MC values over several trajectories, to get a result whose variance is compa-
rable to that of QMC(1, 1), we conclude that QMC(1, 1) works better both in
accuracy and computational time.

13

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

50 100 150 200
7.8

7.9

8

8.1

Time

η

PSfrag replacements

QMC

MC

50 100 150 200
7.8

7.9

8

8.1

Time

η

PSfrag replacements

QMC

MC

50 100 150 200
7.8

7.9

8

8.1

Time

η

PSfrag replacements

QMC

MC

Fig. 8. Viscosity trajectory with a single run of MC (left), QMC(1, 1) (middle) and
the average of three separate MC simulations (right) for the case s = 12 (n = 5)
using 134 (28561) particles with z = 0.1, β = 1.0 and d = 1.0.

Table 1 summarizes the mean and standard deviation of the viscosity and first
normal stress difference coefficient values obtained using the various QMC al-
gorithms and its comparison with MC. The simulation is run till T = 200
with a step size of 0.1 and with 134 (28561) particles and the averaging is
done only in the stationary part of the trajectory. Algorithm QMC(3, 2) is
not directly comparable with the others for it works with a different parti-
cle number. We took 134 (28561) particles for algorithms MC, QMC(1, 0),
QMC(0, 1) and QMC(1, 1) and 174 (83521) particles for QMC(3, 2) algorithm.
It can be inferred once again (compare with [1]) from the results of QMC(1, 0)
simulation, that sorting is absolutely essential for convergence.

Method Mean(η) Std. deviation(η) Mean(Ψ) Std. deviation(Ψ)

MC 7.920106 0.0581 60.190969 0.4191

QMC(1, 0) 14.151654 0.4493 107.421801 5.2260

QMC(0, 1) 8.078955 0.0276 61.716518 0.1626

QMC(1, 1) 7.930789 0.0274 60.371526 0.2182

QMC(3, 2) 7.932184 0.0195 60.348455 0.1414

Table 1
Mean and standard deviation comparison of the different QMC algorithms with MC
for the case s = 12 (n = 5) with 134 (28561) particles. For the computation only
the stationary part of the trajectory (t ≥ 50, as shown in figure 8) is considered.
Only for the QMC(3, 2) algorithm 174 (83521) particles are considered with z = 0.1,
β = 1.0 and d = 1.0.

At this stage, we have the following situation: MC and QMC both work for
high dimensions, the former can be implemented in a straightforward manner
whereas the latter requires sorting the particle positions at each time step. The
advantage with QMC is that the results have less noise compared to MC, but
the extra processes may take up additional time. But what we observe (figure
9) is that this does not contribute significantly as transport dominates the total

14

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

3 4 5 6 7
−6

−5.5

−5

−4.5

−4

−3.5

−3

No. of beads

lo
g

1
0T

im
e
 p

e
r

p
a
rt

ic
le

Fig. 9. Time taken for transport (stars), sorting (circles) and diffusion (+) per time
step for 3, 4, 5 and 6 beads.

computational time. Though the time taken for diffusion is quite significant
in the case of 3 beads, it is overtaken by transport in higher dimensions (4, 5,
6 and 7 beads). In fact the transport part seriously affects the computational
time if we go to real high dimensions as depicted in figure 10.

2 8 14 20
−6

−4

−2

0

No. of beads

lo
g 10

T
im

e
pe

r
pa

rt
ic

le
 p

er
 ti

m
e

st
ep

Fig. 10. Average time taken by a particle for a single run of QMC(0, 1) (dots) and
the corresponding MC algorithm (squares) for various dimensions. Note that the
time for initial sampling is not taken into account.

3.3 Benchmark comparison

We finally present results for the benchmark case, i.e, the dumbbell case, to
compare with the results presented in [14]. Various combinations of z, β and d
are taken and the non-dimensional viscosity and first normal stress difference
coefficient are calculated.

15

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

The method presented in [14] proceeds as follows. The values of η and Ψ
are computed for various values of the time discretization ∆t with an MC
algorithm, and finally the results are extrapolated to zero time step to find
the steady state values. In QMC(1, 1) algorithm, we took 58 (390625) particles
and ∆t = 0.1.

Parameters η [14] η QMC(1, 1) Absolute error

z = 0.1, β = 1, d = 0.5 1.03113 1.03132 1.89 x 10−4

z = 0.1, β = 4, d = 0.5 1.00876 1.01128 2.52 x 10−3

z = 0.1, β = 1, d = 1.0 1.01085 1.00960 1.25 x 10−3

z = 0.1, β = 4, d = 1.0 1.00396 1.00305 9.09 x 10−4

Table 2
Comparison of viscosity values obtained from QMC(1, 1) and the MC algorithm in
[14] for different values of the parameters z, β and d

Parameters Ψ [14] Ψ QMC(1, 1) Absolute error

z = 0.1, β = 1, d = 0.5 2.06980 2.12424 5.44 x 10−2

z = 0.1, β = 4, d = 0.5 2.01768 2.07676 5.90 x 10−2

z = 0.1, β = 1, d = 1.0 2.03040 2.07980 4.94 x 10−2

z = 0.1, β = 4, d = 1.0 2.00824 2.05938 5.11 x 10−2

Table 3
Comparison of first normal stress difference coefficient values obtained from
QMC(1, 1) and the MC algorithm in [14] for different values of the parameters
z, β and d

Tables 2 and 3 are to be taken as reference only since the exact value is not
known for the sake of comparison.

4 Conclusion

It can in general be observed from the numerical experiments, that QMC re-
sults show reduced variance in comparison to the corresponding MC ones. As
a consequence, the MC results have to be averaged over several runs (or equiv-
alently, considerably more particles have to be used) in order to obtain the
same variance as the QMC result. Since the overhead in the QMC diffusion
algorithm is masked by the advection step of the Fokker-Planck dynamics,
both the methods have comparable speed and repetition of MC runs imme-
diately leads to a corresponding factor in computational time. Thus, for fixed

16

 preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint -- preprint --

accuracy, through certain QMC algorithms, we achieve improvement in com-
putational time over the simple MC method.

Finally, we want to stress that the purpose of this paper is the comparison of
the different QMC codes with the simplest MC algorithm. There are several
variance reduction techniques associated with MC methods and the same may
be carried over to QMC. Currently such investigations are being carried out.

References

[1] G. Venkiteswaran, M. Junk, QMC algorithms for diffusion equations in high
dimensions, Mathematics and Computers in Simulation .

[2] R. Byron Bird, C. F. Curtiss, R. C. Armstrong, O. Hassager, Dynamics of
Polymeric liquids, Vol. 1, Wiley Interscience, 1987.

[3] R. Byron Bird, C. F. Curtiss, R. C. Armstrong, O. Hassager, Dynamics of
Polymeric liquids, Vol. 2, Wiley Interscience, 1987.

[4] H. C. Öttinger, Stochastic Processes in Polymeric Fluids, Springer, 1996.

[5] L. Devroye, Non-uniform random variate generation, Springer, New York, 1986.

[6] P. A. Raviart, An analysis of particle methods, in: F. Brezzi (Ed.), Numerical
Methods in Fluid Dynamics, Springer-Verlag, Berlin, 1985, pp. 243–324.

[7] C. Lécot, F. E. Khettabi, Quasi-Monte Carlo simulation of diffusion, Journal of
Complexity 15 (1999) 342–359.

[8] H. Faure, Discrépance de suites associées à un systéme de numération (en
dimension s), Acta Arith. 42 (1982) 337–351.

[9] E. Thiémard, Economic generation of low-discrepancy sequences with a b-ary
gray code, EPFL-DMA-ROSO, RO981201 (1998).

[10] S. Tezuka, Uniform random numbers: Theory and practice, Kluwer Academic
Publishers, Boston, 1995.

[11] H. Niederreiter, Random number generation and quasi-Monte Carlo methods,
Vol. 6, Society for Industrial and Applied Mathematics, 1992.

[12] I. M. Sobol, On the distribution of points in a cube and the approximate
evaluation of integrals, USSR Comput. Math. Math. Phys .

[13] R. Sedgewick, Algorithms in C, Addison-Wesley, Reading, Massachusetts, 1990.

[14] J. Ravi Prakash, H. C. Öttinger, Viscometric functions for a dilute solution of
polymers in a good solvent, Macromolecules 32 (6) (1998) 2028–2043.

17

