

Parallele Numerik

Problem 7: Heat equation

www.math.uni-konstanz.de/numerik/

Consider the following 2D heat equation

$$
\begin{align*}
& \frac{\partial u}{\partial t}=\Delta u+f, \quad(x, y) \in[0,1]^{2}, \quad t \geq 0 \tag{1}\\
& f=2 \pi^{2} \sin (\pi x+\pi y)
\end{align*}
$$

Please write a parallel program to numerically solve this equation by using the five-points finite difference scheme

$$
\begin{align*}
\frac{u\left(t_{n+1}, x_{i}, y_{j}\right)-u\left(t_{n}, x_{i}, y_{j}\right)}{\Delta t} & =\frac{1}{h^{2}}\left[u\left(t_{n}, x_{i+1}, y_{j}\right)+u\left(t_{n}, x_{i-1}, y_{j}\right)\right. \\
+u\left(t_{n}, x_{i}, y_{j+1}\right) & \left.+u\left(t_{n}, x_{i}, y_{j-1}\right)-4 u\left(t_{n}, x_{i}, y_{j}\right)\right]+f\left(t_{n}, x_{i}, y_{j}\right) \tag{2}\\
t_{n} & =n \Delta t, \quad n=0,1,2, \ldots \\
x_{i} & =i h, \quad i=0,1, \ldots, N \tag{3}\\
y_{j} & =j h, \quad j=0,1, \ldots, M .
\end{align*}
$$

(i) Take $\mathrm{u}(0,,,:, \mathrm{s}=0$ initially and boundary values as follows,

$$
\begin{aligned}
& u(t, 0, y)=-u(t, 1, y)=\sin (\pi y) \\
& u(t, x, 0)=-u(t, x, 1)=\sin (\pi x)
\end{aligned}
$$

(ii) Choose $\triangle t \leq \frac{1}{4} h^{2}$ to ensure the stability of this scheme.
(iii) The analytic solution is stationary. Please choose a suitable convergence criterion ϵ. In case that

$$
\|u(n+1,:,::)-u(n,:,:)\|<\epsilon,
$$

we say $u(n+1,:,:)$ is an approximate solution of equation (1).
(iv) Carry out a performance analysis of your parallel program.
(v) While using MPI,

- please compare performance with different communication modes (blocking/nonblocking);
- Remark: Write the parallel code in such a way that each node stores its final result in a separate file.
(vi) A sequential program is available online for reference.

