Beweisbaustelle Kurzeinführung

Beweisbaustelle

Konvergente Folgen sind beschränkt

 $\sqrt{2}$ ist irrational

differenzierbare Funktionen sind stetig

symmetrische Matrizen haben reelle Eigenwerte

Ziel: Zusammenhänge zwischen mathematischen Strukturen verstehen

Ich *verstehe*, warum differenzierbare Funktionen stetig sind. Normalbürger erfassen/spüren/ahnen den Grund **Formal**bürger begründen in der Beweissprache

Die Beweissprache

- > hat sehr wenige Vokabeln
- > hat sehr präzise Regeln
- > verlangt kein Weltwissen

ist von Maschinen verstehbar!

Die Beweissprache regelt den Umgang mit mathematischen Objekten:

Menge

Eigenschaft

Funktion

natürliche Zahl

Körper

Vektorraum

Gruppe

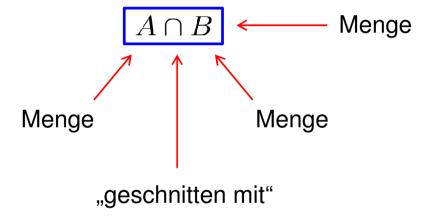
Matrix

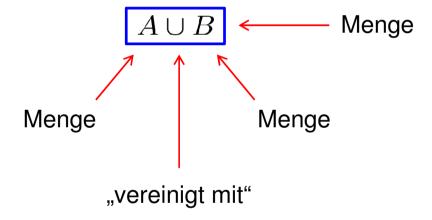
Tupel

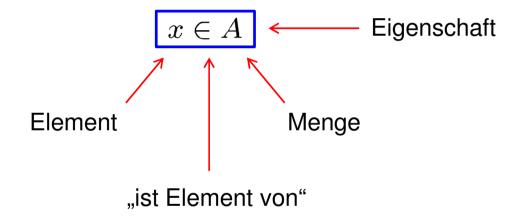
Mathematische Objekte können

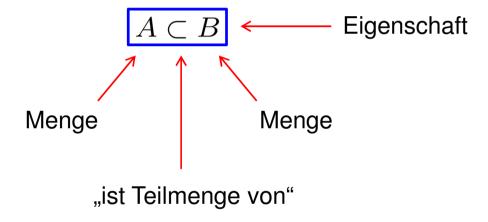
- > einen Namen tragen
- > zu anderen Objekten verknüpft werden

```
>> Beispiel . . .
```





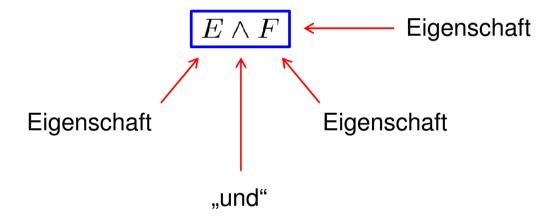




Mathematische Eigenschaften

- > sind spezielle Objekte
- » können Eigenschaften anderer Objekte beschreiben
- » erzeugen durch logische Verknüpfungen neue Eigenschaften

```
>> Beispiel . . .
```

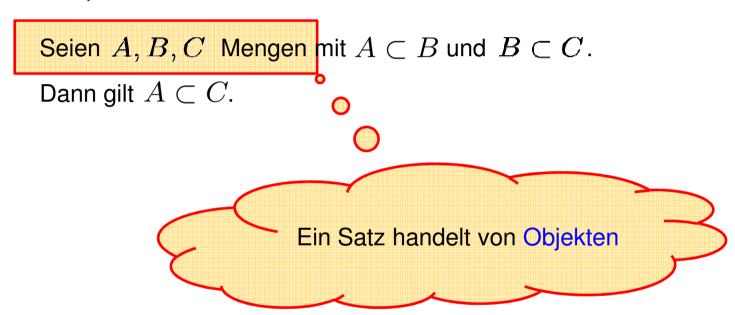


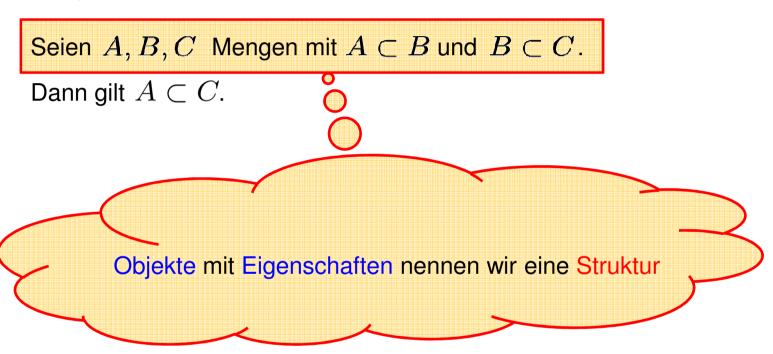
$$E \wedge F$$

$$\text{,und} \text{``}$$

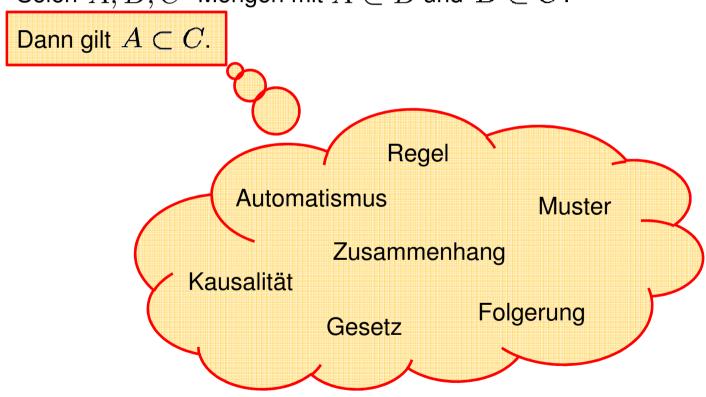
$$E \vee F$$
 "oder"

$$\neg E$$
 "Gegenteil von"





Seien A,B,C Mengen mit $A\subset B$ und $B\subset C$.



Seien A,B,C Mengen mit $A\subset B$ und $B\subset C$. Dann gilt $A\subset C$.

Ein mathematischer Satz beschreibt eine

Regel in einer mathematischen Struktur.

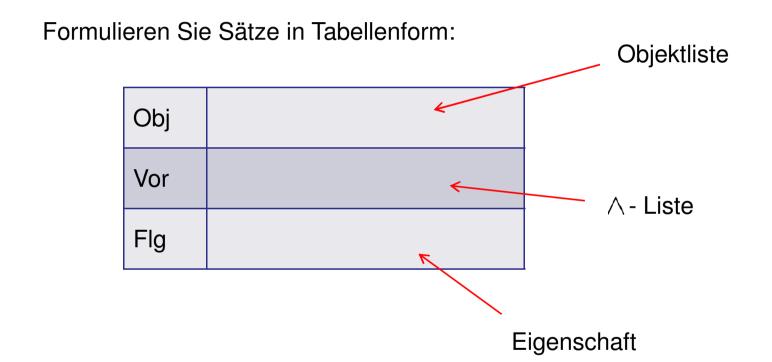
```
>> Beispiel . . .
```

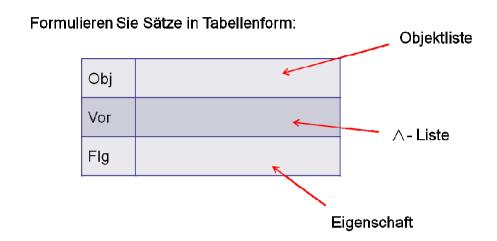
Alternative Notation für einen mathematischen Satz

Obj	A,B,C: Menge
Vor	$A \subset B \wedge B \subset C$
Flg	$A \subset C$

Weitere Notation

A,B,C: Menge mit $A \subset B \land B \subset C \Rightarrow A \subset C$





Satz1: Jede Menge ist Teilmenge von sich selbst.

Satz2: Die leere Menge ist Teilmenge jeder Menge.

Satz1: Jede Menge ist Teilmenge von sich selbst.

Obj	A : Menge
Vor	
Flg	$A \subset A$

A: Menge $\Rightarrow A \subset A$

Satz2: Die leere Menge ist Teilmenge jeder Menge.

Obj	A : Menge
Vor	
Flg	$\emptyset \subset A$

Der Satz bezieht sich auf das externe Mengenobjekt \emptyset .

Er macht also nur in einem Kontext Sinn, in dem \emptyset vorliegt.

Dort beschreibt er eine Eigenschaft von \emptyset .

Satz2: Die leere Menge ist Teilmenge jeder Menge.

Obj	A : Menge
Vor	
Flg	$\emptyset \subset A$

A: Menge $\Rightarrow \emptyset \subset A$

Allgemein gilt: Sätze sind Eigenschaften ihrer Bezugsobjekte.

Objektliste Obj Vor Flg Eigenschaft

Satz3: $\sqrt{2}$ ist irrational.

Satz4: (im Kontext, wo A,B Mengen sind) Jedes Element aus A ist in B . Satz3: $\sqrt{2}$ ist irrational.

Obj	
Vor	
Flg	$\neg(\sqrt{2}\in\mathbb{Q})$

Es gilt: $\neg(\sqrt{2} \in \mathbb{Q})$

Satz4: (im Kontext wo A,B Mengen sind) Jedes Element aus A ist in B .

Obj	x : Element
Vor	$x \in A$
Flg	$x \in B$

Die Eigenschaft beschreibt die Teilmengenbeziehung.