
1. Explanation of finite element code

A finite element is a triple (T, Π, Σ) consisting of a closed polygonal
domain T (triangle or quadrilateral in our case), a finite dimensional
space of shape functions Π ⊂ C0(T ), and a set Σ of independent linear
functionals on Π (each functional is called a degree of freedom). A
space Vh ⊂ L

1(Ω) on a bounded domain Ω is called finite element
space based on M ∈ N finite elements (Ti, Πi, Σi), if

int(Ti) ∩ int(Tj) = ∅, i 6= j, Ω̄ =

M⋃

i=1

Ti,

and if for each v ∈ Vh, the restriction to int(Tj) equals p|int(Tj) for
exactly one p ∈ Πj .

Finally, the space Vh is generated with affine transformations, if Vh

is based on finite elements (Tj , Πj, Σj), j = 1, . . . , M which are all
obtained through invertible affine transformations Fj from a reference
element (Tref , Πref , Σref), where

Tj = Fj(Tref), Πj = {pref ◦ F−1
j | pref ∈ Πref}

and

Σj = {Λ |Λ(p) = Λref(p ◦ Fj) , Λref ∈ Σref}.

In the following, we assume that the triangulation is admissible in the
sense that any two polygons Ti 6= Tj with non-empty intersection either
have a full edge or a single vertex in common (no hanging vertices).
Moreover, the members of Σref should be delta-functionals at points
xref

1 , . . . , xref
s ∈ Tref where possible points on ∂Tref are distributed in

such a way that they always coincide on common edges of transformed
elements. Moreover, the restriction of a shape function on an edge of
∂Tref should be uniquely determined by the degrees of freedom on that
edge.

With these assumptions, the degrees of freedom which guarantee Vh ⊂
H1(Ω) are easily obtained by removing duplicate functionals corre-
sponding to nodes Fi(x

ref
k ) = Fj(x

ref
l ) on the boundary of adjacent

elements.

With these considerations as background, we now explain the basic
steps of the Matlab FE code:

% set problem parameter

FEM = parameters;

% generate the mesh
1



2

FEM = trimesh(FEM);

% generate reference element

FEM = P1(FEM);

% generate finite element space

FEM = FEspace(FEM);

% assemble FE matrix

FEM = assembleLS(FEM);

% solve problem

v = FEM.matrices.A\FEM.matrices.b;

In line 2, problem parameters are stored in the struct FEM.parameters
including geometry and mesh size information needed in the triangu-
lation step (line 4). The resulting struct FEM.Th in combination with
the necessary information FEM.Ref on the reference element obtained
in line 6 is then used in line 8 to generate the finite element space
FEM.Vh. In the present case, the space is constructed from a triangular
mesh and P1-shape functions. The information contained in the struct
FEM.Vh is required in the assembly step together with parameters in
FEM.parameters which describe, for example, the right hand side or
the boundary data. The resulting finite element matrices and vectors
are returned in the struct FEM.matrices which can then be used for
solving the problem with appropriate methods.

In the following subsections, each subroutine and the corresponding
output data structure is described in more detail.

1.1. The triangulation. Starting point for the construction of the
finite element data is a triangulation Th = {T1, . . . , TM} of the bounded
polygonal domain Ω ⊂ R

dim with dim = 2. The polygonal sets Ti which
are all of the same type like triangles (q = 3), quadrilaterals (q = 4),
etc., are described by specifying the q vertices of their boundaries. This
is implemented with two separate matrices. The matrix elements of
dimension M × q contains in row i the vertex numbers of ∂Ti. The
sequence of the numbers has to reflect the following orientation of ∂Ti:
when moving from vertex j to vertex j + 1, the set Ti has to be on the
left hand side. The required vertex coordinates are contained in the
matrix corners of dimension nc × dim which contains in each row a
vertex coordinate vector.

In addition to this inevitable grid data, there may be other relevant
information associated to the triangulation. For example, the problem
may contain the side condition that the solution has specified values
on parts of the boundary ∂Ω. This so called Dirichlet condition may



3

be incorporated directly into the definition of the finite element space.
To this end, the matrix Dirichlet of dimension ns × 2 contains in its
rows the vertex numbers of the segments which make up the Dirichlet
boundary. The finite element space will later consist of functions which
are identically zero on these segments (including the end points). In
the same way, other parts of the boundary or boundaries of subdomains
can be specified.

1.2. The reference element. All elements are assumed to be affine
transformations of a single reference element (Tref , Πref , Σref) where the
degrees of freedom are delta-functionals localizing at points of Tref

which are stored in the matrix nodes of size s × 2. The list nodes

also contains the vertices of the polygon Tref . The corresponding row
indices are collected in the vector shape where the ordering is compat-
ible with the one of the elements in the triangulation: when moving
from node shape(i) to node shape(i+1), the reference element Tref

is located on the left hand side. When there are degrees of freedom
associated to nodes located on the interior of edge i (starting at vertex
i and ending at vertex i + 1), the corresponding node numbers (row
indices of nodes) are listed in the vector onedges{i}, again with the
ordering described above. Finally, the numbers of interior nodes are
listed in arbitrary order in the vector interior.

The number of vertices, interior nodes and nodes on edge 1, edge 2, etc.
are stored in this sequence in the vector nodedis and nnodes contains
the toal number of nodes.

To set up the affine map which transforms the reference element Tref to
a specific element Tj , the matrix makeF is needed. If j is the element
number, then vnum=Th.elements(j,:) is the list of vertex numbers so
that p=Th.corners(vnum,:) is a matrix with the vertex coordinates in
its rows. Using makeF, the affine map is constructed with the product
F=makeF*p so that [1,x,y]*F are the coordinates of the point in Tj

belonging to (x, y) ∈ Tref .

Apart from geometrical specifications of Tref and Σref , the data struc-
ture concerning the reference element also contains full information on
the shape functions Πref . For example, the function basis yields the
values of the i-th basis function at the points specified by the n × 2-
matrix x when calling it with basis(i,x). Similarly, the partial deriv-
ative with respect to the first and the second coordinate are provided
with the functions dbasis{1} and dbasis{2}.



4

The assemby of the finite element matrices and vectors is carried out
numerically using quadrature rules. In general, the degree of exactness
should be high enough to guarantee exact integration in the constant
coefficient case (with polynomials as shape functions). The correspond-
ing integration weights and nodes are stored in intw and intx where
the latter is a m × 2 matrix. The values of all base functions at the
integration nodes are precomputed and stored in the variable baseval

- more precisely, baseval(:,i) are the function values of basis func-
tion i. Similarly, the values of the partial derivatives are available in
dbaseval(1,:,i) and dbaseval(2,:,i).

Similarly, for integration along edge k of the reference element, the
matrices bdrx{k} and bdrw{k} contain integration nodes and weights
while the vectors basevalbdr{k}(:,i) and dbasevalbdr{k}(1,:,i),
dbasevalbdr{k}(2,:,i) are the corresponding values of basis func-
tion i and its partial derivatives at the integration nodes on edge k.
It should be noticed that the measure represented by bdrw{k} is the
standard Lebesgue measure of the unit interval which serves as domain
of the edge parametrization. The missing Jacobian factor has to be
included when integrating over edges of the transformed element.

1.3. The finite element space. Detailed information about the finite
element space is set up using the triangulation Th and the reference
element Ref.

In each of the M elements Tj , the ith reference node has a unique
global node number which is obtained with k=elementnodes(j,i).
The coordinates of node k are obtained with nodes(k,:). The num-
ber of the nodal basis function belonging to node k can be found with
nodetodof(k). If the node does not correspond to a basis function
because it is located on a Dirichlet boundary, the result is zero. The
inverse mapping is realized with the list doftonode which yields the
node number corresponding to the number of a nodal basis function.
The dimension of the finite element space is available as ndof.

Whenever two element vertices i<j are connected by an edge, the ma-
trix entry k=edgelist(i,j) yields the number of the corresponding
edge. More information on egde k is stored in the cell array edge.

For example, edge{k}.n is the number of elements adjacent to edge k.
Their element numbers are available from the vector edge{k}.element.
Moreover, the number of the reference edge number which is mapped to
the edge under consideration is stored for each of the relevant elements



5

in edge{k}.edge. Finally, edge{k}.nds is the number of interior nodes
on edge k.

1.4. The assembly. In the assembly step, the information on the fi-
nite element space and the equation parameters is used to generate
the stiffness matrix, the mass matrix and the load vector. Since the
construction depends strongly on the equation under consideration, it
should be custom edited.

The assembly is carried out by loops over elements (and maybe edges, if
the stiffness matrix contains boundary integrals). The required element
matrices are constructed first.


