

Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk J. Budday Ausgabe: 29.04.2011

Abgabe: 06.05.2011 bis spätestens 9 Uhr

in die Briefkästen vor F441

Übungen zur Analysis II

Blatt 02

Aufgabe 1

- (a) Untersuchen Sie die Funktionenfolge $f_n(x) = -2nxe^{-nx^2}$ für $0 \le x \le 1$ auf punktweise und gleichmäßige Konvergenz und geben Sie die zugehörige Grenzfunktion an.
- (b) Seien $a, b \in \mathbb{R}$ mit a < b und (f_n) eine Funktionenfolge stetiger Funktionen $f_n : [a, b] \longrightarrow \mathbb{R}$, die gleichmäßig gegen die Grenzfunktion $f : [a, b] \longrightarrow \mathbb{R}$ konvergiert. Zeigen Sie, dass dann gilt:

$$\int_{a}^{b} f(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx$$

(c) Zeigen Sie anhand eines Gegenbeispiels, dass (b) im Allgemeinen nicht gilt, wenn man die gleichmäßige Konvergenz der Funktionenfolge (f_n) durch punktweise Konvergenz gegen die Grenzfunktion f ersetzt.

Aufgabe 2

Beweisen Sie folgenden Satz:

Sei $I \subset \mathbb{R}$ ein Intervall und (f_n) eine Folge differenzierbarer Funktionen $f_n: I \longrightarrow \mathbb{R}$ für die für alle $x \in I$ der Grenzwert $\lim_{n \to \infty} f_n(x)$ existiert. Desweiteren sei die Ableitung f'_n für alle $n \in \mathbb{N}$ stetig und die Folge (f'_n) in I gleichmäßig konvergent. Definiert man dann $f: I \longrightarrow \mathbb{R}$ durch $f(x) := \lim_{n \to \infty} f_n(x)$ für $x \in I$, so ist auch f differenzierbar mit stetiger Ableitung und es gilt $f'(x) = \lim_{n \to \infty} f'_n(x)$ für alle $x \in I$.

Aufgabe 3

Zeigen Sie:

- (a) In metrischen Räumen sind beliebige Vereinigungen offener Mengen wieder offen.
- (b) In metrischen Räumen sind endliche Schnitte offener Mengen wieder offen.
- (c) Metrische Räume sind topologische Räume.
- (d) Unendliche Schnitte offener Mengen müssen nicht offen sein.

Aufgabe 4

Sei (X,d) ein metrischer Raum und $M\subset X$ eine beliebige Teilmenge. Zeigen Sie:

- (a) M ist genau dann offen, wenn ihr Komplement M^C abgeschlossen ist.
- (b) ∂M ist abgeschlossen.
- (c) $\partial M = \partial (M^C)$
- (d) $\overline{M} = \overset{\circ}{M} \cup \partial M$