

Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk J. Budday Ausgabe: 21.10.2011

Abgabe: 28.10.2011 vor Beginn der Vorlesung in die Briefkästen vor F441

Übungen zur Analysis III

Platt 01

Aufgabe 1: Klassifikation von Differentialgleichungen

Klassifizieren Sie die folgenden Differentialgleichungen nach den in Definition 1.1 vorgestellten Klassifizierungsmerkmalen:

- (a) $x'(t) = t \frac{1}{2}x(t)^2$
- **(b)** x'''(t)x''(t) 2x(t)x'(t) = 0
- (c) x'(t) 2x(t) + 5t = 1

Aufgabe 2: Elektrischer Schwingkreis

Zeigen Sie, dass die Funktion $U(t) = U_0 e^{-\bar{t}} [\cos(t) + \sin(t)]$ folgendes Anfangswert-problem löst:

$$U(t) + U'(t) + \frac{1}{2}U''(t) = 0$$
 , $U(0) = U_0$, $U'(0) = 0$

Aufgabe 3: DGL I

- (a) Gegeben sei die Menge von reellen Funktionen $A := \{x \mapsto Cx^2 \mid C \in \mathbb{R}\}$. Bestimmen Sie eine Differentialgleichung erster Ordnung, deren Lösungsmenge gerade durch A gegeben ist. Welche Rolle spielt dabei die Konstante $C \in \mathbb{R}$?
- (b) Gegeben sei die Menge von reellen Funktionen $B:=\{x\mapsto \tan(x+C)\mid C\in\mathbb{R}\}$. Bestimmen Sie eine Differentialgleichung erster Ordnung, deren Lösungsmenge gerade durch B gegeben ist.

Aufgabe 4: DGL II

- (a) Beweisen Sie die Existenz und die Eindeutigkeit einer Lösung $u \in C^1([-1,1])$ des Anfangswertproblems $\frac{u'(t)}{u(t)^2} = t$, u(0) = 1.
- (b) Lösen Sie das Anfangswertproblem $y'(x) = (x + y(x))^2$, y(0) = 0, indem Sie es durch eine geeignete Transformation in die Form mit getrennten Variablen überführen und dann Aufgabe 3 verwenden.

Aufgabe 5: Erstes Integral

Eine nicht-konstante Funktion $E: \mathbb{R}^m \longrightarrow \mathbb{R}$ heißt erstes Integral der Differentialgleichung y'(t) = f(y(t)), wenn $t \mapsto E(y(t))$ konstant ist für jede Lösung der Differentialgleichung.

- (a) Zeigen Sie, dass $E(x) = x_1^2 + x_2^2$ ein erstes Integral von $x_1' = x_2, \ x_2' = -x_1$ ist.
- (b) Bestimmen Sie ein erstes Integral zur Differentialgleichung $\cos(t)u'(t) \sin(t)u(t) = \tan(t)^2 + 1$.