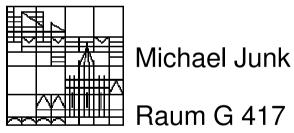
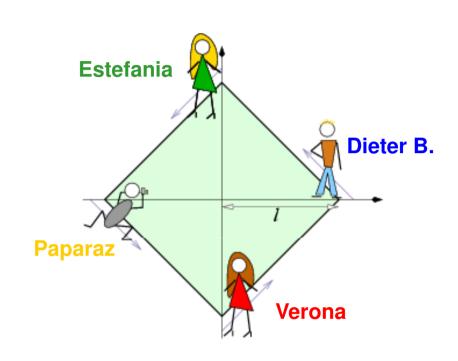
Mathematik für Physiker I

Themenübersicht



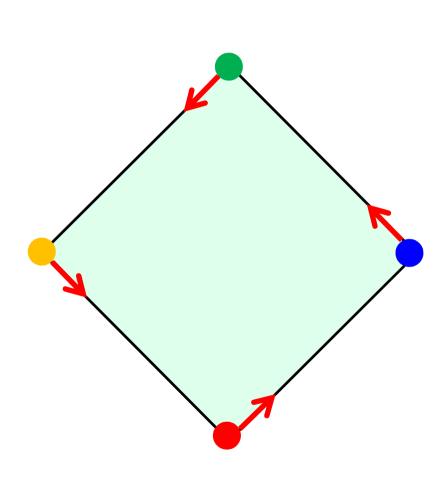
4 Verfolger

Jeder bewegt sich mit fester Geschwindigkeit immer in Richtung zum Vorgänger



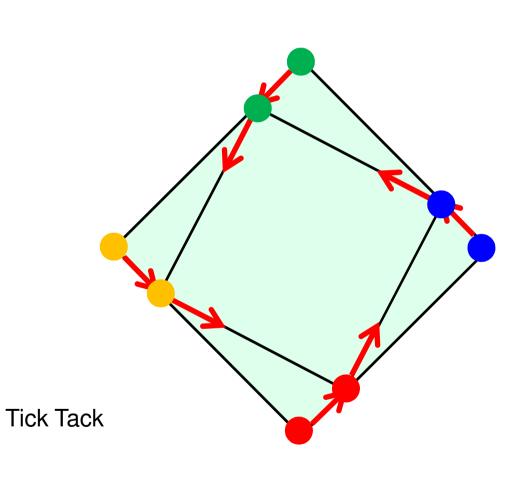
Auf die Plätze ...

... fertig



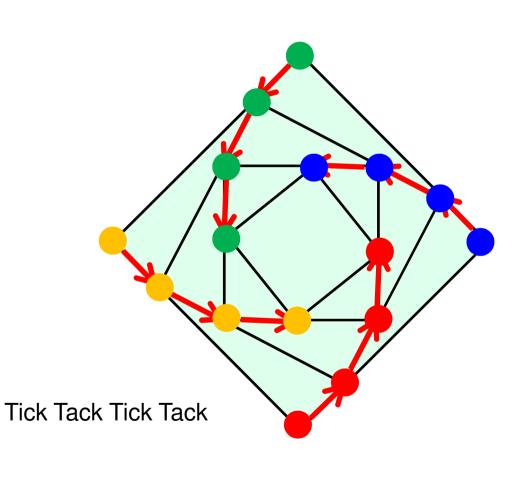
Tick

... los

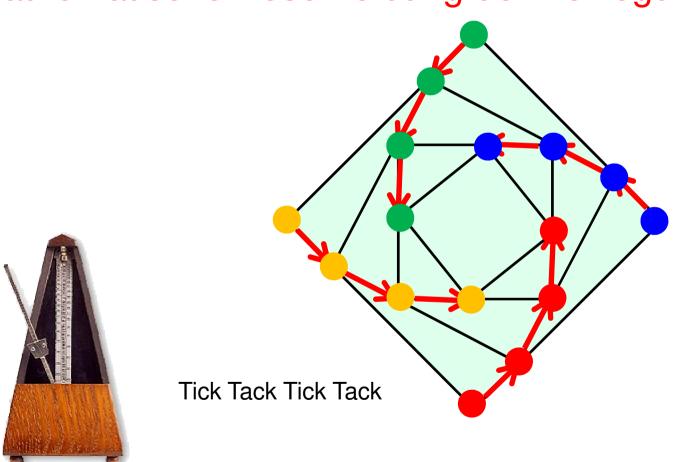


... los Tick Tack Tick

... los



Mathematische Beschreibung der Bewegung?



Frage: Was ist Bewegung?

Eine zeitliche Änderung von Positionen

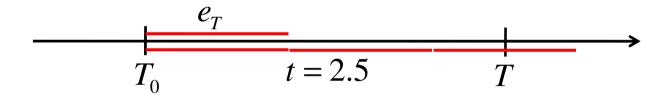
Frage: Was ist Zeit?

... philosophische Frage ...

Frage: Wie beschreibt man Zeit?

Definition einer Zeiteinheit e_T

Festlegung eines Referenzzeitpunkts $T_{\scriptscriptstyle 0}$



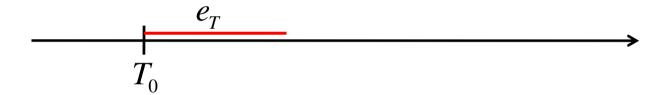
Ein beliebiger Zeitpunkt T wird beschrieben durch die Anzahl t der Zeiteinheiten zwischen T_0 und T (t negativ, wenn T vor T_0)

Standardmodell:

beliebige reelle Bruchteile der Zeiteinheit möglich: $t \in \mathbb{R}$

Frage: Wie beschreibt man Zeit?

Zeit wird durch (e_T,T_0,\mathbb{R}) beschrieben



R ist ein typisches Beispiel eines angeordneten Körpers

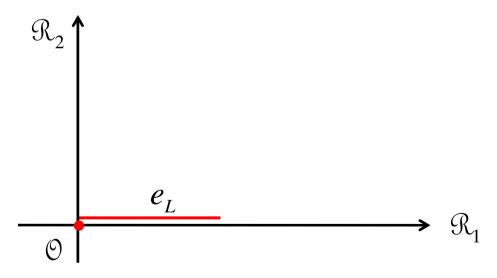
Ordnungsrelation s < t bedeutet s ist früher als t

Frage: Wie beschreibt man Positionen?

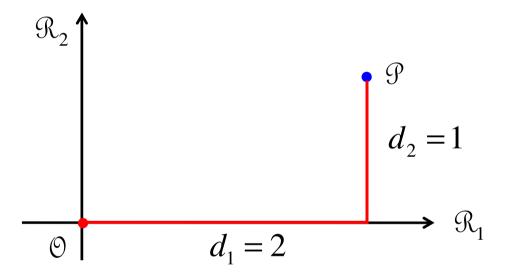
Definition einer Längeneinheit $e_{\scriptscriptstyle L}$

Festlegung einer Referenzposition ©

Festlegung von Referenzrichtungen $\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3$



Frage: Wie beschreibt man Positionen?



Eine Position $\mathscr G$ ist beschrieben durch die Anzahl d_1,d_2,d_3 der Längeneinheiten, um die ein Punkt ausgehend von der Stelle $\mathscr G$ nacheinander entlang der Richtungen $\mathscr R_1,\mathscr R_2,\mathscr R_3$ verschoben werden muss, um an der Position $\mathscr G$ anzukommen.

Frage: Wie beschreibt man Positionen?

Standardmodell:

beliebige reelle Bruchteile der Längeneinheit sind möglich

$$d_1, d_2, d_3 \in \mathbb{R}$$

zusammengefasst:

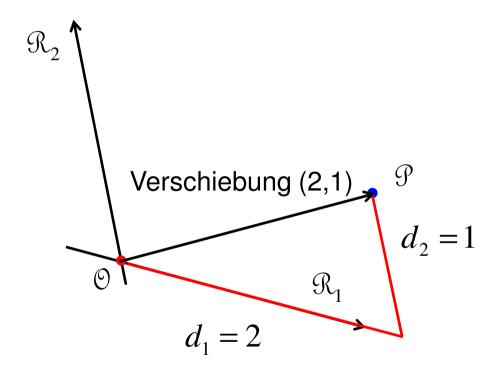
Eusammengefasst: Kartesisches Mengenp
$$(d_1,d_2)\in\mathbb{R} imes\mathbb{R}=\mathbb{R}^2$$
 $(d_1,d_2,d_3)\in\mathbb{R} imes\mathbb{R}=\mathbb{R}^3$ Menge aller Paare Menge aller Tripel

Menge aller Paare mit Komponenten aus $\mathbb R$

Menge aller Tripel mit Komponenten aus
$$\mathbb R$$

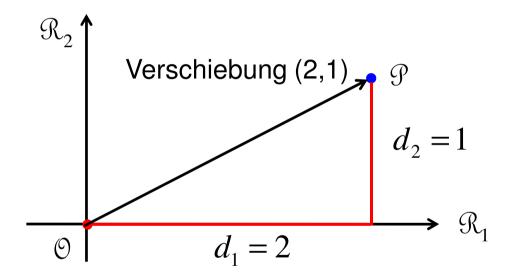
Paare/Tripel beschreiben Verschiebungen (und indirekt Positionen)

 $(\mathfrak{O},\mathfrak{R}_1,\mathfrak{R}_2,\mathfrak{R}_3,e_L)$ bzw. $(\mathfrak{O},\mathfrak{R}_1,\mathfrak{R}_2,e_L)$ sind Koordinatensysteme



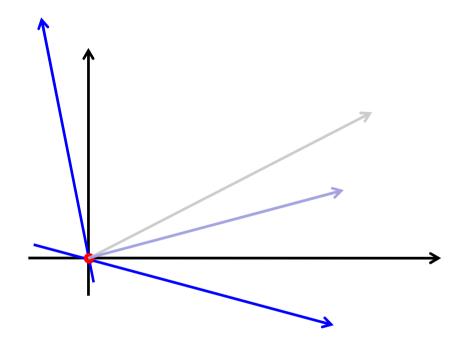
allgemeines Koordinatensystem

 $(\mathfrak{O},\mathfrak{R}_1,\mathfrak{R}_2,\mathfrak{R}_3,e_L)$ bzw. $(\mathfrak{O},\mathfrak{R}_1,\mathfrak{R}_2,e_L)$ sind Koordinatensysteme



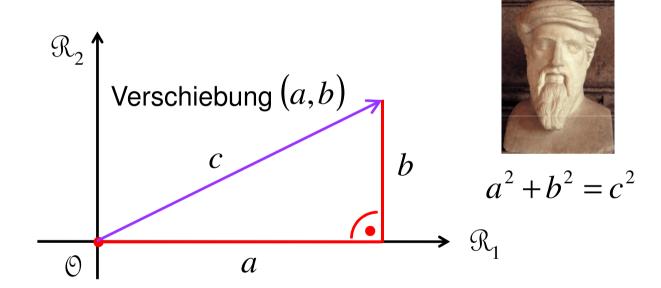
kartesisches Koordinatensystem

Achtung: In unterschiedlichen Koordinatensystemen steht das gleiche Paar (2,1) für unterschiedliche Verschiebungen



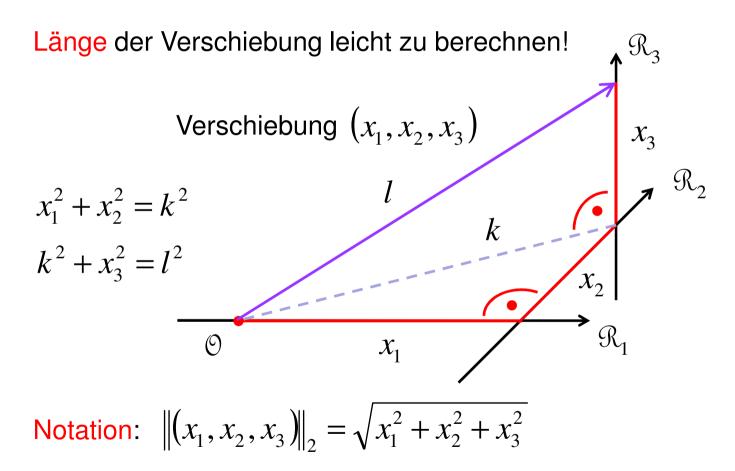
Vorteil des kartesischen Koordinatensystems:

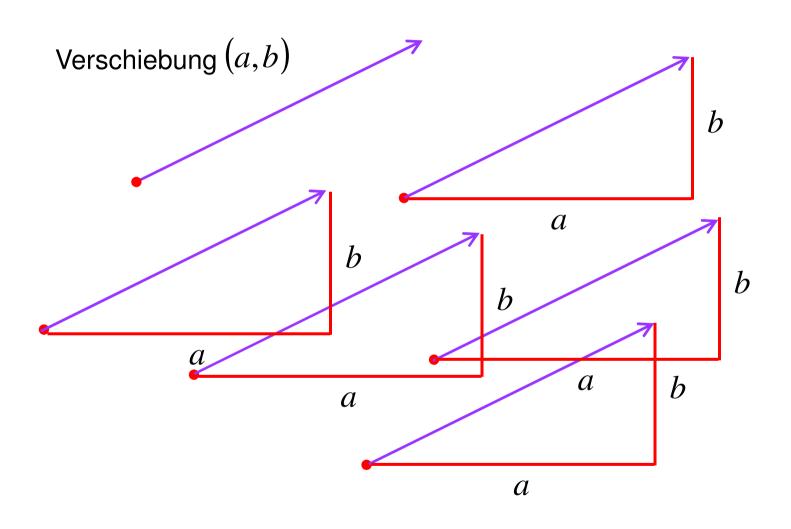
Länge der Verschiebung leicht zu berechnen!

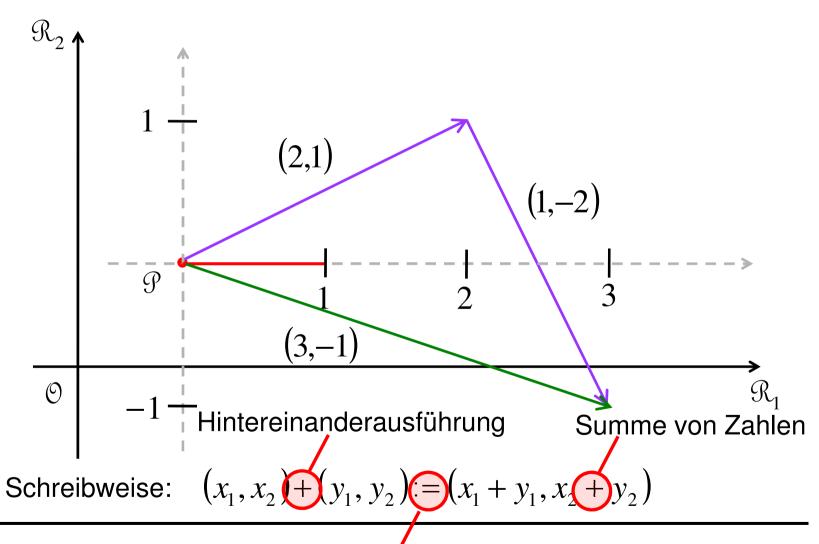


Notation:
$$\|(a,b)\|_2 = \sqrt{a^2 + b^2}$$
 Länge oder Norm von (a,b)

Vorteil des kartesischen Koordinatensystems:







Seite mit : definiert durch Seite mit =

Kommutativgesetz: $(x_1, x_2) + (y_1, y_2) = (y_1, y_2) + (x_1, x_2)$

Wieso?
$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$
 ... so war's definiert
$$= (y_1 + x_1, y_2 + x_2)$$
 ... bei Zahlen darf man
$$= (y_1, y_2) + (x_1, x_2)$$
 ... so war's definiert

Kommutativgesetz: $(x_1, x_2) + (y_1, y_2) = (y_1, y_2) + (x_1, x_2)$

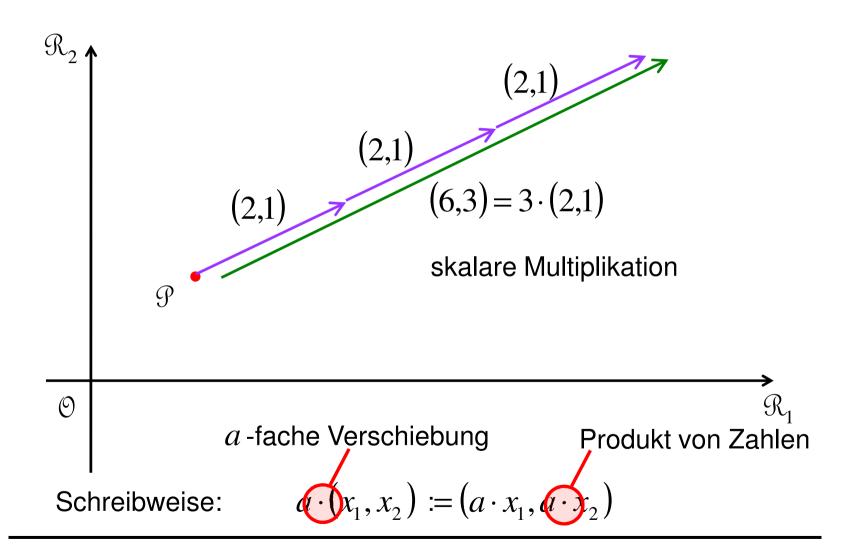
Assoziativgesetz:
$$((x_1, x_2) + (y_1, y_2)) + (z_1, z_2) = (x_1, x_2) + ((y_1, y_2) + (z_1, z_2))$$

Nullverschiebung: $(x_1, x_2) + (0,0) = (x_1, x_2)$

Rückverschiebung:
$$(x_1, x_2) + (-x_1, -x_2) = (0,0)$$

wird auch mit $-(x_1, x_2)$ bezeichnet

$$(x_1, x_2) - (y_1, y_2)$$
 kürzt $(x_1, x_2) + (-(y_1, y_2))$ ab



Assoziativgesetz: $a \cdot (b \cdot (x_1, x_2)) = (a \cdot b) \cdot (x_1, x_2)$

Distributivgesetz: $(a+b)\cdot(x_1,x_2)=a\cdot(x_1,x_2)+b\cdot(x_1,x_2)$

Distributivgesetz: $a \cdot ((x_1, x_2) + (y_1, y_2)) = a \cdot (x_1, x_2) + a \cdot (y_1, y_2)$

neutrales Element: $1 \cdot (x_1, x_2) = (x_1, x_2)$

Beispiel: was ist $\frac{1}{4} \cdot (x_1, x_2)$?

 $\frac{1}{4} \cdot (x_1, x_2) \text{ ist die Verschiebung, die 4 mal ausgeführt } (x_1, x_2) \text{ ergibt}$ $4 \cdot \left(\frac{1}{4} \cdot (x_1, x_2)\right) = \left(4 \cdot \frac{1}{4}\right) \cdot (x_1, x_2) = 1 \cdot (x_1, x_2) = (x_1, x_2)$

$$4 \cdot \left(\frac{1}{4} \cdot (x_1, x_2)\right) = \left(4 \cdot \frac{1}{4}\right) \cdot (x_1, x_2) = 1 \cdot (x_1, x_2) = (x_1, x_2)$$

 $(\mathbb{R}^2,+,\cdot)$ bzw. $(\mathbb{R}^3,+,\cdot)$ sind typische Vektorräume

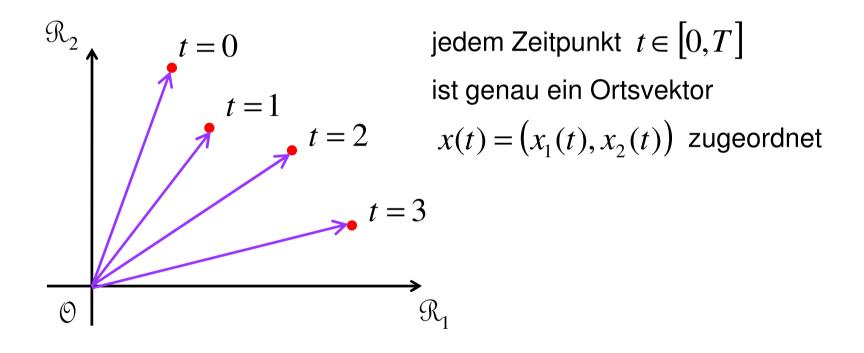
Elemente von Vektorräumen heißen Vektoren

Ebene/räumliche Verschiebungen sind also spezielle Vektoren

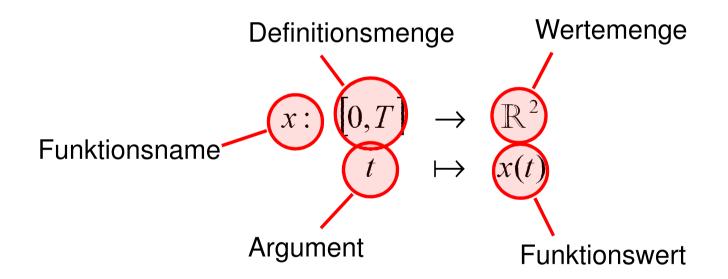
Die Verschiebung die ${\mathfrak O}$ in ${\mathcal G}$ überführt heißt auch Ortsvektor zu ${\mathcal G}$

Positionen lassen sich durch Ortsvektoren beschreiben

Frage: Wie beschreibt man Bewegung?



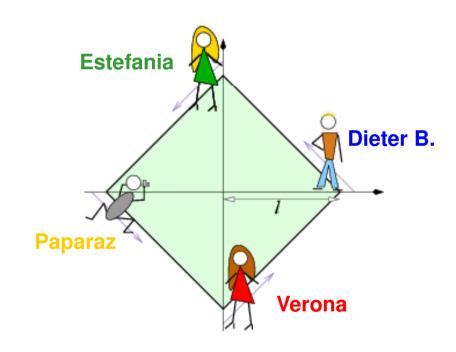
Frage: Wie beschreibt man Bewegung? Durch Funktionen.



Frage: Wie lautet die Funktion im Beispiel?

4 Verfolger

Jeder bewegt sich mit fester Geschwindigkeit w immer in Richtung zum Vorgänger

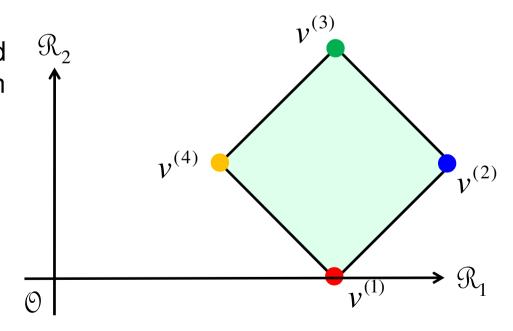


Wertemenge?

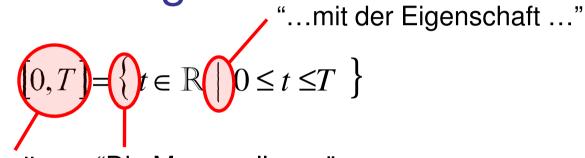
$$(v^{(1)}, v^{(2)}, v^{(3)}, v^{(4)}) \in \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 \times \mathbb{R}^2 = (\mathbb{R}^2)^4$$

Verfolgungszustand wird durch 8 Zahlen beschrieben...

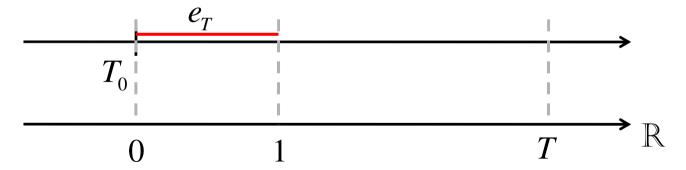
Das Problem ist 8-dimensional



Definitionsmenge?



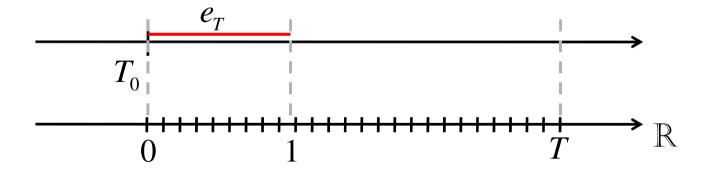
Intervall "Die Menge aller ..."



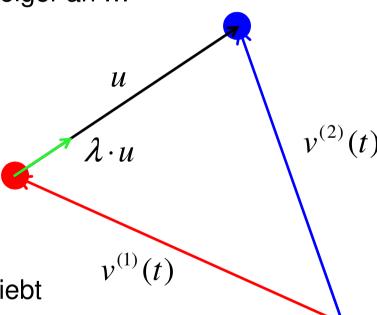
Definitionsmenge?

oder bei festem Zeittakt $\Delta t > 0$

$$\mathcal{T} = \{0, \Delta t, 2\Delta t, \dots, n\Delta t = T \}$$



Schauen wir uns zwei Verfolger an ...



Idee: der rote Verfolger verschiebt

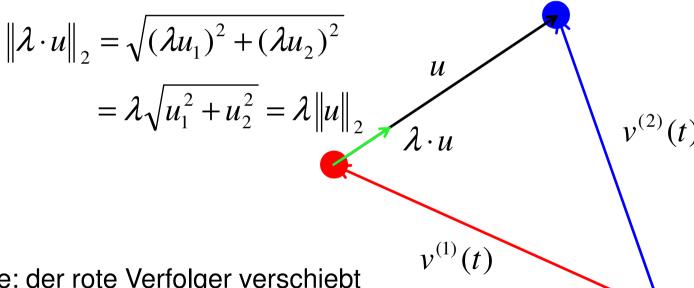
Schauen wir uns zwei Verfolger an ...

$$v^{(1)}(t) + u = v^{(2)}(t)$$
 $\downarrow \downarrow$
 $u = v^{(2)}(t) - v^{(1)}(t)$

 $\frac{u}{\lambda \cdot u} \qquad v^{(2)}(t)$ niebt

Idee: der rote Verfolger verschiebt

Schauen wir uns zwei Verfolger an ...



Idee: der rote Verfolger verschiebt

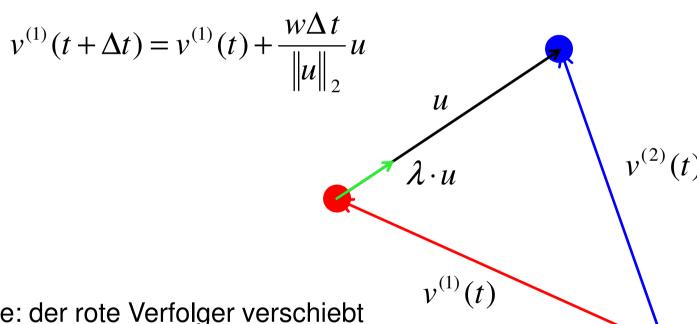
Schauen wir uns zwei Verfolger an ...

$$\|\lambda \cdot u\|_{2} = w\Delta t$$

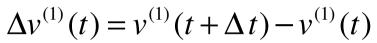
$$\lambda = \frac{\psi \Delta t}{\|u\|_{2}}$$

 $\frac{u}{\lambda \cdot u} \qquad v^{(2)}(t)$ $v^{(1)}(t)$

Idee: der rote Verfolger verschiebt



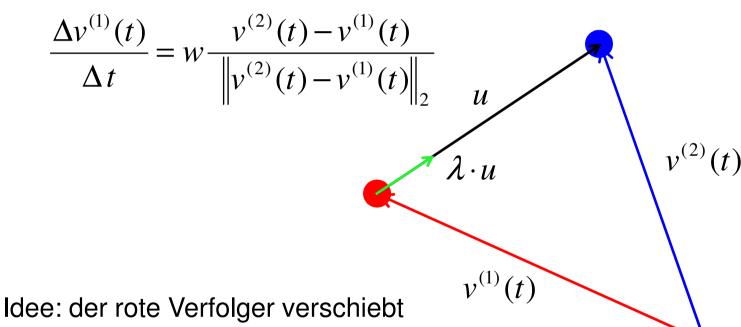
Idee: der rote Verfolger verschiebt



$$\frac{\Delta v^{(1)}(t)}{\Delta t} = w \frac{u}{\|u\|_2}$$

 $\frac{u}{\lambda \cdot u} \qquad v^{(2)}(t)$ niebt

Idee: der rote Verfolger verschiebt



$$\frac{\Delta v^{(1)}(t)}{\Delta t} = w \frac{v^{(2)}(t) - v^{(1)}(t)}{\left\|v^{(2)}(t) - v^{(1)}(t)\right\|_{2}}
\frac{\Delta v^{(2)}(t)}{\Delta t} = w \frac{v^{(3)}(t) - v^{(2)}(t)}{\left\|v^{(3)}(t) - v^{(2)}(t)\right\|_{2}}
\frac{\Delta v^{(3)}(t)}{\Delta t} = w \frac{v^{(4)}(t) - v^{(3)}(t)}{\left\|v^{(4)}(t) - v^{(3)}(t)\right\|_{2}}
\frac{\Delta v^{(4)}(t)}{\Delta t} = w \frac{v^{(1)}(t) - v^{(4)}(t)}{\left\|v^{(1)}(t) - v^{(4)}(t)\right\|_{2}}
F: (\mathbb{R}^{2})^{4} \to (\mathbb{R}^{2})^{4}$$

$$x = (v^{(1)}, v^{(2)}, v^{(3)}, v^{(4)})$$

$$\frac{\Delta x(t)}{\Delta t} = F(x(t))$$

$$F: (\mathbb{R}^2)^4 \to (\mathbb{R}^2)^4$$

$$t_0 = 0$$
, $t_1 = \Delta t$, $t_2 = 2\Delta t$, $t_3 = 3\Delta t$,...

$$\frac{\Delta x(t_k)}{\Delta t} = F(x(t_k)) \quad \text{bzw.} \quad \frac{x(t_{k+1}) - x(t_k)}{\Delta t} = F(x(t_k))$$

 $x(t_0) = x_0$ vorgegebene Startpositionen

$$x(t_1) = x(t_0) + \Delta x(t_0) = x(t_0) + \Delta t \cdot F(x(t_0))$$
 erster Schritt

$$x(t_2) = x(t_1) + \Delta x(t_1) = x(t_1) + \Delta t \cdot F(x(t_1))$$
 zweiter Schritt

typischer Fall einer rekursiven Definition

Erhöhung der Genauigkeit

durch feineren Zeittakt $\Delta t = \frac{1}{10}$

oder besser $\Delta t = \frac{1}{100}$

oder besser $\Delta t = \frac{1}{1000}$

oder besser $\Delta t = \frac{1}{10000}$

oder besser

typischer Fall einer Zahlenfolge die gegen 0 strebt (konvergiert)

Erhöhung der Genauigkeit

Nullfolge $\Delta t \rightarrow 0$ führt zu Folgen

$$\frac{\Delta x(t)}{\Delta t} = \frac{x(t + \Delta t) - x(t)}{\Delta t}$$
 von Differenzenquotienten

bei Konvergenz spricht man von Differenzialquotienten

$$\frac{dx(t)}{dt}$$

und nennt die Grenzfunktion differenzierbar

Erhöhung der Genauigkeit ...

Das Verfolgungsgesetz wird zur Differenzialgleichung

$$\frac{dx(t)}{dt} = F(x(t))$$

Die Lösung erfordert ...

$$\begin{split} x(t_k) &= x_0 + \Delta \, x(t_0) + \Delta \, x(t_1) + \cdots \Delta \, x(t_{k-1}) \\ &= x_0 + \sum_{i=0}^{k-1} \Delta \, x(t_i) = x_0 + \sum_{i=0}^{k-1} \frac{\Delta \, x(t_i)}{\Delta \, t} \Delta \, t \quad \text{Integral} \\ &\approx x_0 + \sum_{i=0}^{k-1} F(x(t_i)) \Delta \, t \approx x_0 + \sum_{i=0}^{t_k} F(x(\tau)) d\tau \end{split}$$

Es ergibt sich das Mathematikprogramm:

- 1) Körper $\mathbb{Q}, \mathbb{R}, \mathbb{C}$
- 2) Vektorräume \mathbb{R}^2 , \mathbb{R}^3 , $(\mathbb{R}^2)^4$,...
- 3) Funktionen $F:D \to W$
- 4) Folgen $\frac{1}{10}, \frac{1}{100}, \frac{1}{1000}, \frac{1}{10000}, \cdots$
- 5) Differentiation, Integration $\frac{\Delta x(t)}{\Delta t} \rightarrow \frac{dx(t)}{dt}$