

Universität Konstanz FB Mathematik & Statistik Prof. Dr. M. Junk Dr. Z. Yang

J. Budday

Ausgabe: 11.12.2009

Abgabe: 18.12.2009

Vor Beginn der Vorlesung

Übungen zur Mathematik für Physiker I $_{ m Blatt~08}$

Diace

Aufgabe 1:

Es sei P_N der Vektorraum aller reellen Polynome vom Grad $\leq N$. Desweiteren seien folgende Abbildungen gegeben (Differentiation, Integration und Translation):

mit $(T_{\alpha}p)(x) := p(x - \alpha)$ für ein beliebiges $\alpha > 0$.

- (a) Zeigen Sie: Die Abbildungen D, I und T_{α} sind linear.
- (b) Geben Sie jeweils durch geschickte Wahl einer Basis eine möglichst einfache Matrixdarstellung der linearen Abbildungen D, I und T_{α} an. Hinweis: Im Ausgangs- und Zielvektorraum muss nicht zwingend die gleiche Basis gewählt werden!

Aufgabe 2:

Lösen Sie das folgende Gleichungssystem mittels Gauß-Elimination:

$$\begin{pmatrix} 6 & 9 & -8 & -39 \\ 3 & 5 & -2 & -20 \\ 6 & 10 & -5 & -40 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 7 \\ 11 \end{pmatrix}$$

Aufgabe 3:

Für ein zunächst beliebiges $\alpha \in \mathbb{R}$ sei folgendes Gleichungssystem gegeben:

$$\begin{pmatrix} 1 & 1 & 1 \\ 2 & -1 & -1 \\ -1 & 2 & 3 \\ 3 & -2 & \alpha \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 5 \end{pmatrix}$$

Bestimmen Sie mittels Gauß-Elimination für welche $\alpha \in \mathbb{R}$ dieses Gleichungssystem lösbar bzw. nicht lösbar ist und geben Sie die entsprechenden Lösungen an.

1

Aufgabe 4:

(a) Bestimmen Sie mittels Gauß-Elimination für welche $\alpha \in \mathbb{R}$ die Vektoren

$$\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \quad , \quad \begin{pmatrix} -1 \\ 5 \\ 7 \end{pmatrix} \quad , \quad \begin{pmatrix} 3 \\ \alpha \\ -1 \end{pmatrix}$$

linear abhängig bzw. linear unabhängig sind.

(b) Bestimmen Sie für jedes $\alpha \in \mathbb{R}$ jeweils das Bild der linearen Abbildung, welche durch die folgende Matrix beschrieben wird:

$$\begin{pmatrix}
1 & -1 & 3 \\
2 & 5 & \alpha \\
3 & 7 & -1
\end{pmatrix}$$

Aufgabe 5:

Sei X ein beliebiger K-Vektorraum mit der Basis $B=(b_1,\ldots,b_n)$. Desweiteren sei die sogenannte Koordinaten-Abbildung gegeben:

$$C_B: X \longrightarrow K^n$$

$$\alpha_1 b_1 + \ldots + \alpha_n b_n \longmapsto \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}$$

- (a) Zeigen Sie, dass die Abbildung C_B linear ist.
- (b) Zeigen Sie, dass beliebige Vektoren $x_1, \ldots, x_k \in X$ mit $k \leq n$ genau dann linear unabhängig sind, wenn ihre zugehörigen Koordinatenvektoren linear unabhängig sind.
- (c) Seien $U \subset X$ und $V \subset K^n$ gegebene Untervektorräume. Zeigen Sie, dass gilt:
 - (i) $C_B(U)$ ist ein Untervektorraum von K^n
 - (ii) Die Menge $\{x \in X \mid C_B(x) \in V\}$ ist ein Untervektorraum von X