Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Michael Junk
M. Gubisch, O. Lass, R. Mancini, S. Trenz

Sommersemester 2012
Ausgabe: 18.06.2012

Abgabe: 25.06.2012, 11:00 Uhr, Briefkasten 11

Optimierung

5. Übungsblatt

$\square \quad$ Exercise 15

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ a four times differentiable, approximative function - which means that the function values $f(x)$ are not known exactly, but with some error tolerance $\epsilon_{\text {tol }}$:

$$
f_{\text {known }}(x)=f_{\text {exact }}(x)+\epsilon_{\text {tol }}(x) \quad \text { where }\left|\epsilon_{\text {tol }}(x)\right| \leq \epsilon \text { for some known } \epsilon>0
$$

Determine the numerical first derivative $D_{c}^{1}(f, h)$ by central differences and prove that the error ϵ_{H} arising in the numerical approximation of the second derivative $D_{c}^{2}(f, h)$ is of the order $\epsilon_{H}=\mathrm{O}\left(\epsilon^{\frac{4}{9}}\right)$ for a suitable discretization stepsize h, i.e.

$$
\left\|D_{c}^{2}\left(f_{\text {known }}, h\right)-f_{\text {exact }}^{\prime \prime}\right\|_{\infty}<\text { Const } \cdot \epsilon^{\frac{4}{9}} .
$$

$\square \quad$ Exercise 16

Let $f \in \mathcal{C}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Verify the formula

$$
\frac{\partial}{\partial x_{i}} \frac{\partial}{\partial x_{j}} f(x)=\frac{f\left(x+\epsilon e_{i}+\epsilon e_{j}\right)-f\left(x+\epsilon e_{i}\right)-f\left(x+\epsilon e_{j}\right)+f(x)}{\epsilon^{2}}+\mathrm{O}(\epsilon)
$$

for the approximation of the Hessian matrix by evaluations of f.

$\square \quad$ Exercise 17

Let $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be a quadratic function of the form

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma, \quad Q \in \mathbb{R}^{n \times n} \text { symmetric } \& \text { positive definite, } c \in \mathbb{R}^{n} \text { and } \gamma \in \mathbb{R} \text {. }
$$

Let $x_{0} \in \mathbb{R}^{n}$ and H be a symmetric, positive definite matrix. Define $\tilde{f}(x):=f\left(H^{-\frac{1}{2}} x\right)$ and $\tilde{x}_{0}=H^{\frac{1}{2}} x_{0}$. Let $\left(\tilde{x}_{k}\right)$ be generated by the Steepest Descent Method with optimal stepsize choice, i.e. $\tilde{x}_{k+1}=\tilde{x}_{k}+\tilde{t}_{k} \tilde{d}_{k}$ where $\tilde{d}_{k}=-\nabla \tilde{f}\left(\tilde{x}_{k}\right)$ and $\tilde{t}_{k}=t\left(\tilde{d}_{k}\right)$ as determined in Exercise 6.

Let $\left(x_{k}\right)$ generated by the gradient-like method $x_{k+1}=x_{k}+t_{k} d_{k}$ with optimal stepsize t_{k} and preconditioner H, i.e. $t_{k}=t\left(d_{k}\right)$ as in Exercise 6 and $d_{k}=H^{-1}\left(-\nabla f\left(x_{k}\right)\right)$.
Show that the two optimization methods are equivalent, i.e. $x^{k}=H^{-\frac{1}{2}} \tilde{x}_{k}$ holds for all k, and that the optimal stepsizes are identical: $t_{k}=\tilde{t}_{k}$.
$\square \quad$ Exercise 19 (UEFA Euro 2012)
Fill out the following table correctly:

	Competitor 1	Competitor 2	Result
Semifinal 1			$:$
Semifinal 2			\vdots
Final			$:$

