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Optimierung
6. Übungsblatt

� Exercise 19 (Preconditioning)

Consider the quadratic function f : R2 → R,

f(x, y) =
(
x y

)( 100 −1
−1 2

)(
x
y

)
+

(
1 1

)( x
y

)
+ 3,

with the conditioners

H = Id =

(
1 0
0 1

)
, H = ∇2f =

(
100 −1
−1 2

)
, H =

(
fxx 0
0 fyy

)
=

(
100 0
0 2

)
.

Use the Gradient Method you implemented for the first program sheet on f̃ to determine the number
of gradient steps required for finding the minimum of f with the different preconditionings.

� Exercise 20 (Equality and inequality constraints)

Consider the constrained optimization problem

max
(x,y)

f(x, y) subject to (x, y) ∈ F

where
f(x, y) = x2 + x2y2 + 9y2 + 9, F = {(a, b) ∈ R2 | 2a4 + b2 ≤ 239}.

1. Show that the problem has a global solution.

2. Draw the set of admissible points (you may use Matlab here).

3. Show that the problem has no inner solution and that boundary solutions cannot be unique.

4. Determine the corresponding Lagrange functional and solve the optimization problem.

� Exercise 20 (Classical Newton method)

Consider the functions f, g : R → R, given by

f(x) = x3 − 2x+ 2, g(x) = sin(x).

1. Show that for the starting point x0 = 0, the classical Newton iteration of f has two accumulation
points which are both no zeros of f . Find another initial point which does not lead to a convergence
of the Newton method applied on f .

2. Find a starting point x0 such that the Newton iteration for g tends to +∞.

3. Show why the methods do not converge to a zero of the functions by a suitable graphic.


