
INF2340: A CRASH COURSE IN NUMERICAL METHODS FOR
CONSERVATION LAWS

KNUT–ANDREAS LIE

This note is devoted to the numerical solution of hyperbolic conservation laws, giving
a crash course in the most important mathematical and numerical concepts used to build
efficient computational methods. The note is intended to be a complement to the material
covered in the INF2340–lectures and in the lecture notes by R.J. LeVeque.

1. Hyperbolic conservation laws

The term “hyperbolic conservation laws” usually denotes a first-order, quasilinear partial
differential equation on the following form (in one spatial dimension)

(1) ut + f(u)x = 0.

Here u is some conserved quantity (scalar or vector) and f(u) is a flux function. A conservation
law usually arises from a more fundamental physical law on integral form. In one spatial
dimension, this law typically reads

(2)
d

dt

∫ x2

x1

u(x, t) dx = f
(
u(x1, t)

)
−f

(
u(x2, t)

)
.

The physical law states that the rate of change of quantity u within [x1, x2] equals the flux
across the boundaries x = x1 and x = x2. The partial differential equation (1) then follows
under additional regularity assumptions on u.

The problem typically encountered in conservation laws is the initial-value problem for (1),

(3) ut + f(u)x = 0, u(x, 0) = u0(x),

which is often referred to as the Cauchy problem, For a nonlinear flux function f , this equation
may develop discontinuities—singularities in the first-order derivatives—in finite time even
for smooth initial data. This means that the solution of (3) is understood in the weak form,

(4)
∫ ∞

0

∫
R

(
uφt + f(u)φx

)
dtdx =

∫
R
u0(x)φ(x, 0) dx.

Here φ(x, t) is a smooth test function possessing all the necessary derivatives. The function
φ(x, t) is also assumed to have compact support, meaning that it vanishes outside a bounded
region in the (x, t)-plane.

Solutions defined by the weak form (4) are not necessarily unique. The solution concept
must therefore be extended to include additional admissibility conditions to single out the
correct solution among several possible candidates satisfying the weak form. A classical
method to obtain uniqueness is to add a regularising second-order term to (1), giving an
equation

uε
t + f(uε)x = εuε

xx,
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that has smooth solutions. Then the unique solution of (1) is defined as the limit of uε(x, t) as
ε tends to zero. Physically, this corresponds to adding viscosity, and the method is therefore
called the vanishing viscosity method. Since the solutions uε(x, t) are smooth, classical analysis
coupled with careful limit arguments can be used to show existence, uniqueness and stability
of the solution of (1). This was first done by Kruzkov [8], whose seminal work on ’doubling
of the variables’ has had a tremendous impact on the development of modern theory for
nonlinear partial differential equations.

Working with limits of viscous solutions is not what we want. Instead we impose other
conditions. There are several ways to impose such admissibility conditions. In this book we
will use the concept of entropy functions, which is motivated from thermodynamic conditions
in gas dynamics. To this end, we introduce a (convex) entropy function η(u) and a corre-
sponding entropy flux ψ(u) and require that an admissible weak solution u must satisfy the
entropy condition

(5) η(u)t + ψ(u)x ≤ 0,

which must be interpreted in the weak sense as

(6)
∫ ∞

0

∫
R

(
η(u)φt + ψ(u)φx

)
dtdx+

∫
R
η(u0(x))φ(x, 0) dx ≥ 0.

The functions η and ψ are called an entropy pair and satisfy the compatibility condition

ψ′(u) = η′(u)f ′(u).

The existence of such entropy pairs is not obvious for a general system of conservation laws,
but such pairs exist and have a clear physical interpretation for several important systems of
equations, for instance in gas dynamics. For scalar equations it can be shown that all entropy
pairs with convex η are equivalent. A common choice is the so-called Kruzkov entropy pair,

(7)
∫ ∞

0

∫
R

(
|u− k|φt + sign(u− k)[f(u)− f(k)]φx

)
dtdx+

∫
R
|u0(x)− k|φ(x, 0) dx ≥ 0.

We say that u(x, t) is an entropy weak solution of (1) if it satisfies (7) for all real numbers k
and suitable test functions φ(x, t) > 0.

2. Finite-volume methods

Finite-difference methods use discrete differences to approximate the derivatives in a par-
tial differential equation. This gives discrete evolution equations for a set of point values
approximating the true solution of the PDE. Once a discontinuity arises in the hyperbolic
conservation law, the differential equation will cease to be pointwise valid in the classical
sense. Hence, it is also to be expected that classical finite-difference approximations will
break down at discontinuities, causing severe problems for standard finite-difference meth-
ods. To overcome this computational problem, it turns out that instead of seeking pointwise
solutions to (1), one should look for solutions of the more fundamental integral form (2). To
this end, we break the domain [x1, x2] into a set of subdomains — which we call finite volumes
or grid cells — and seek approximations to the global solution u in terms of a discrete set of
cell average defined over each grid cell; that is, we seek approximations to

∫
u(x, t) dx over

each grid cell.
There is a close relation between finite-difference and finite-volume methods since the

formula of a specific finite-volume method in some cases may be interpreted directly as a finite-
difference approximation to the underlying differential equation. However, the underlying
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principles are fundamentally different. Finite difference methods evolve a discrete set of point
values by approximating (1). Finite-volume methods evolve globally defined solutions as given
by (2) and realize them in terms of a discrete set of cell averages. The evolution of globally
defined solutions is the key to the success of modern methods for hyperbolic conservation
laws. There are many good books describing such methods. We can recommend the books
by Godlewski and Raviart [4], Kröner [7], LeVeque [13, 14], and Toro [23].

3. Conservative methods

The starting point for a finite-volume method for (1) is the cell-average defined by

un
i =

1
∆x i

∫ xi+1/2

xi−1/2

u(x, tn) dx.

These cell averages are usually evolved in time by an explicit time-marching method, obtained
by integrating (2) in time

(8) un+1
i − un

i =
1

∆x

∫ tn+1

tn

f(u(xi−1/2, t)) dt−
1

∆x

∫ tn+1

tn

f(u(xi+1/2, t)) dt.

Generally, we will not be able to compute the flux integrals exactly, since u(xi±1/2, t) varies
with time and is in general unknown. However, the equation suggests that the numerical
method should be of the form

(9) un+1
i = un

i − λ
(
Fn

i+1/2 − Fn
i−1/2

)
,

where λ = ∆t/∆x and Fn
i±1/2 is some approximation to the average flux over each cell

interface,

Fn
i±1/2 ≈

1
∆t

∫ tn+1

tn

f(u(xi−1/2, t)) dt.

Any numerical method on this form will generally be conservative. To see this, we can sum
the equation over all i. The flux terms will cancel in pairs, and we are left with

M∑
i=−M

un+1
i =

M∑
i=−M

un
i − λ

(
Fn

M+1/2 − Fn
−M−1/2

)
.

The two flux terms vanish if we assume either periodic boundary conditions or that u(x, t)
approaches the same constant value as x→ ±∞. Thus, the numerical method conserves the
quantity u, i.e., ∫

un(x) dx =
∫
u0(x) dx.

Hyperbolic conservation laws have finite speed of propagation, unless they degenerate in
some form. It is therefore natural to assume that the average fluxes are given in terms of
their neighboring cell averages; that is,

Fn
i+1/2 = F

(
un

i−p, . . . , u
n
i+q

)
.

The function F is called the numerical flux function and will be referred to by the abbreviation
F (un; i).
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4. A few classical schemes

We have now gone through the basic underlying principles for the design of schemes for
conservation laws. It is therefore time to show some examples of such schemes.

The simplest example is the upwind scheme. If f ′(u) ≥ 0, the scheme has numerical flux
F (un; i) = f(un

i ) and reads (with λ = ∆t/∆x)

(10) un+1
i = un

i − λ
[
f(un

i )− f(un
i−1)

]
Similarly, if f ′(u) ≤ 0, the upwind scheme takes the form

un+1
i = un

i − λ
[
f(un

i+1)− f(un
i )

]
In either case, the upwind scheme is a two-point scheme based upon one-sided differences
in the so-called upwind direction, i.e., in the direction where the information flows from.
The idea of upwind-differencing is the underlying design principle behind a large number of
schemes of the Godunov-upwind type, which we will return to below.

Another classical scheme is the three-point Lax–Friedrichs scheme,

(11) un+1
i = 1

2

(
un

i−1 + un
i+1

)
− 1

2λ
[
f(un

i+1)− f(un
i−1)

]
.

The Lax–Friedrichs scheme is based upon central differencing and is a very stable, all-purpose
scheme that will always converge, although sometimes painstakingly slowly. The scheme can
be written in conservation form by introducing the numerical flux

F (un; i) =
1
2λ

(
un

i − un
i+1

)
+

1
2
[
f(un

i ) + f(un
i+1)

]
.

The upwind and the Lax–Friedrichs schemes are both examples of schemes that are formally
first-order in the sense that their truncation error is of order two, see Section 5. Hence the
schemes will converge with order one for smooth solutions.

Better accuracy can be obtained if we make a better approximation to the integral in the
definition of the average flux. Instead of evaluating the integral at the endpoint tn, we can
evaluate it at the midpoint tn+1/2 = tn + 1

2∆t. This gives a classical second-order method
called the Richtmeyer two-step Lax–Wendroff method

u
n+1/2
i+1/2 = 1

2

(
un

i + un
i+1

)
− 1

2λ
[
f(un

i+1)− f(un
i )

]
,

un+1
i = ui − λ

[
f(un+1/2

i+1/2 )− f(un+1/2
i−1/2 )

]
.

(12)

The corresponding numerical flux reads

F (un; i) = f
(

1
2(un

i + un
i+1)− 1

2λ
[
f(un

i+1)− f(un
i )

])
.

Another popular variant is MacCormack’s method

u∗i = un
i − λ

[
f(un

i+1)− f(un
i )

]
u∗∗i = u∗i − λ

[
f(u∗i )− f(u∗i−1)

]
un+1

i = 1
2

(
un

i + u∗∗i
)(13)

which has the following numerical flux

F (un; i) = 1
2f(un

i+1) + 1
2f

(
un

i − λ
[
f(un

i+1)− f(un
i )

])
.

All the above schemes are stable under the CFL restriction

λmax
u
|f ′(u)| ≤ 1.
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Figure 1. Approximate solutions at time t = 10.0 of the linear advection equation (14).

Let us now apply the four schemes to two examples to gain some insight in their behaviour.

Example 1. Let us first consider a linear advection equation with periodic boundary data

(14) ut + ux = 0, u(x, 0) = u0(x), u(0, t) = u(1, t).

As initial data u0(x) we choose a combination of a smooth squared cosine wave and a double
step function.

Figure 1 shows approximate solutions at time t = 10.0 computed by the four schemes on a
grid with 200 nodes using a time-step restriction ∆t = 0.9∆x. We see that the two first-order
schemes smear both the smooth part and the discontinuous path of the advected profile. The
second-order schemes, on the other hand, preserve the smooth profile quite accurately, but
introduce spurious oscillations around the discontinuities.

Example 2. In this example we apply the four schemes introduced above to Burgers’ equation
with discontinuous initial data

(15) ut +
(

1
2u

2
)
x

= 0, u(x, 0) =

{
1, x ≤ 0.1
0, x > 0.1

Burgers’ equation is the archetypical example of a nonlinear equation, possessing a convex
flux that may cause discontinuous shock waves to form even for smooth initial data.

Figure 2 shows approximate solutions at time t = 0.5 computed by all four schemes on
a grid with 50 uniform grid cells and a time-step restriction λ = 0.6. Comparing the two
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Figure 2. Approximate solutions at time t = 0.5 of the Burgers’ equation (15).

first-order schemes, we see that the upwind scheme resolves the discontinuity quite sharply,
whereas the Lax–Friedrichs smears it out over several grid cells. Both second-order schemes
resolve the discontinuity sharply, but produce spurious oscillations downstream.

Although the two examples above were fairly simple, neither of the schemes were able to
compute approximate solutions with a satisfactory resolution (except for the upwind scheme
in Example 2). The first-order methods lack the resolution to prevent smooth linear waves
from decaying and discontinuities to be smeared, whereas second-order methods introduce
nonphysical oscillations near discontinuities. Conceptually, one could imagine a possible mar-
riage of the two types of methods in which we try to retain the best features of each method.
The resulting scheme would then have second-order (or higher) accuracy in smooth regions of
the solution and at the same time have the stability of a first-order scheme where the solution
is not smooth. This is a key concept underlying so-called high-resolution schemes. Assume
now that θn

i is a quantity measuring the smoothness of the solution at grid cell i at time tn
such that θn

i is close to unity if the solution is smooth and θn
i is close to zero if the solution

is discontinuous. Then a hybrid method with numerical flux

F (un; i) =
(
1− θn

i

)
FL(un; i) + θn

i FH(un; i)

would give the desired properties. Here FL(un; i) denotes a low-order flux like the upwind
or the Lax–Friedrichs flux and FH(un; i) is a high-order flux like the Lax–Wendroff or the
MacCormack flux. The quantity θn

i = θ(un; i) called a limiter and the method is called a flux-
limiter method. A large number of successful high-resolution methods have been developed
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based on the flux-limiting approach. A review of such methods if outside the scope of the
note. We will instead retrace our steps in Section 6 and review a more geometrical framework
for developing high-resolution methods. But before we do that, let us take a careful look at
the schemes introduced so far.

5. Convergence of conservative methods

So far, we have established an appropriate framework for designing numerical schemes for
the conservation law (1) and shown a few examples of such schemes. But how can we ensure
that these schemes will compute correct approximations to the equation? Moreover, how can
we be certain that a scheme will converge to the true solution as the discretisation parameters
tend to zero?

To discuss this, we must first define what we mean by convergence. The classical way of
analysing convergence is to consider the truncation error L∆t and show that this error tends
to zero with the discretisation parameters; that is, L∆t = O(∆tr+1) for r > 0, where r is said
to be the order of the scheme. The truncation error for a scheme on the form (19) is defined
as

L∆t = u(x, t+ ∆t)−
(
u(x, t)− λ

[
F (u(x, t); i)− F (u(x, t); i− 1)

])
.

We have seen above that the differential equation (1) is not valid in a pointwise sense for
discontinuous solutions. Thus, the pointwise truncation error cannot be used to establish
convergence. For conservation laws the truncation error only defines the formal order of a
scheme, i.e., the order the scheme would converge with for smooth solutions.

Since solutions of conservation laws generally are taken in the weak sense (4), they are not
generally unique. Pointwise errors of the form u∆t(x, t)−u(x, t) are therefore not well-defined,
where u∆t is defined by an appropriate interpolation of un

i . Instead, we must measure the
deviation in some appropriate norm. It turns out that for scalar equation, the L1 norm is the
correct norm, and we say that an approximation u∆t converges to a function u if∫ t

0
‖u∆t(·, t)− u(·, t)‖1 dt→ 0, as ∆t→ 0.

A famous theorem due to Lax and Wendroff [18] states that if u∆t is computed by a
conservative and consistent scheme and if u∆t converges to a function u almost everywhere
in a uniformly bounded manner, then u is a weak solution to the conservation law (1).

We verified above that any scheme on the form (19) is conservative. The scheme (9) is said
to be consistent if

F (v, . . . , v) = f(v).
Moreover, one generally requires the numerical flux to be Lipschitz continuous, i.e., that there
is a constant L such that

|F (ui−p, . . . , ui+q)− f(u)| ≤ Lmax(|ui−p − u|, . . . , |ui+q − u|).
For linear equations the Lax equivalence theorem states that a scheme is convergent if it

is stable and consistent. A scheme is stable if the errors introduced at a time step do not
grow (too fast) in time. To ensure stability one generally has to impose a restriction on the
time-step through a CFL condition, named after Courant, Friedrichs, and Lewy, who wrote
one of the first papers on finite difference methods in 1928 [3]. The CFL condition states
that the true domain of dependence for the PDE (1) should be contained in the domain of
dependence for (9).
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The Lax equivalence theorem does not hold for nonlinear equations. However, similar re-
sults hold if we can prove that the numerical scheme is contractive in some appropriate norms
since this guarantees that the sequence of approximations is compact and thus convergent.
A sequence {s1, s2, . . . } of elements in a space S is compact if it contains a subsequence that
converges to an element in S.

The set of functions with bounded (total) variation is compact in L1. The total variation
of a continuous function is defined as

TV (v) = lim sup
ε→0

1
ε

∫ ∞

−∞
|v(x+ ε)− v(x)| dx.

For a piecewise constant function the definition of the total variation simplifies to

TV (v) =
∑

i

|vi − vi−1|.

This means that we can show that a conservative and consistent scheme will converge if we can
verify that the corresponding sequence {u∆t} has uniformly bounded total variation. There
are several ways to verify uniformly bounded total variation. The total variation of the exact
solution of a scalar conservation law is nonincreasing with time

TV (u(·, t)) ≤ TV (u(·, s)), t ≥ s.

An obvious way to ensure uniformly bounded variation is therefore to require that the scheme
has the same property; that is,

(16) TV (un+1) ≤ TV (un).

Any scheme that satisfies (16) is called a total variation diminishing method, commonly
abbreviated as a TVD-method. This requirement has been a popular design principle for a
large number of successful schemes, see Section 6.

In addition there are other properties that might be attractive for the scheme to fulfill
• A scheme is monotonicity preserving when it ensures that if the initial data u0

i is
monotone then so is un

i for any n.
• A scheme is L1 contractive if ‖u∆t(·, t)‖1 ≤ ‖u∆t(·, 0)‖1. The entropy weak solution

of a scalar conservation law is L1 contractive.
• A method is monotone if

un
i ≥ vn

i ∀i =⇒ un+1
i ≥ vn+1

i ∀i.
For conservative and consistent methods, these properties are related as follows:

• Any monotone method is L1 contractive.
• Any L1 contractive method is TVD.
• Any TVD method is monotonicity preserving.

Verifying that a method is monotone is quite easy. Unfortunately, it has been proved that a
monotone method is at most first order accurate.

The Lax–Wendroff and compactness theory review above can be used to verify that a
scheme converges to a weak solution of the conservation law. On the other hand, the theory
does not say anything of whether the limit is the correct entropy weak solution or not.
However, one can show that if the scheme (9) satisfies a so-called cell entropy condition on
the form

(17) η(un+1
i ) ≤ η(un

i )− λ
(
Ψn

i+1/2 −Ψn
i−1/2

)
,
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then the limiting weak solution is in fact the entropy weak solution. Here Ψ is a numerical
entropy flux that must be consistent with the entropy flux ψ in the same way as we required
the numerical flux F to be consistent with the flux f .

6. High-resolution Godunov methods

A large number of successful high-resolution methods can be classified as Godunov methods.
We have seen several examples of such methods above. In the following we will therefore
introduce the general setup of Godunov-type methods in some detail, thereby retracing some
of the steps used to derive the schemes in Section 3. For simplicity, the presentation is in one
spatial dimension, but the same ideas applies also in several space dimensions.

We start by defining the sliding average ū(x, t) of u(·, t), namely

(18) ū(x, t) =
1

∆x

∫
I(x)

u(ξ, t) dξ, I(x) = {ξ : |ξ − x| ≤ 1
2∆x}.

If we now integrate (1) over the domain I(x) × [t, t + ∆t], we obtain an evolution equation
for the sliding average ū(x, t)

(19) ū(x, t+ ∆t) = ū(x, t)− 1
∆x

∫ t+∆t

t

[
f
(
u(x+ 1

2∆x, s)
)
− f

(
u(x− 1

2∆x, s)
)]
ds

This equation is the general starting point for any Godunov-type finite-volume scheme, and
the careful reader will notice that (8) is a special case of (19). To make a complete numerical
scheme we must now define how to compute the integrals in (18) and (19). This can gen-
erally done through a three-step algorithm called reconstruct–evolve–average (REA) due to
Godunov:

(1) Starting from known cell-averages un
i in grid cell [xi−1/2, xi+1/2] at time t = tn, we

reconstruct a piecewise polynomial function û(x, tn) defined for all points x. The
simplest possible choice is to use a piecewise constant approximation such that

û(x, tn) = un
i , ∀x ∈ [xi−1/2, xi+1/2].

This will generally result in a method that is formally first order. To obtain a method
of higher order, we use a piecewise polynomial interpolant pi(x) such that

û(x, tn) =
∑

i

pi(x)χi(x),

where χi(x) is the characteristic function of the ith grid cell [xi−1/2, xi+1/2].
(2) Then we evolve the hyperbolic equation (1) exactly (or approximately) with initial

data û(x, tn) to obtain a function û(x, tn + ∆t) a time ∆t later.
(3) Finally, we average the function û(x, tn + ∆t) over an interval I as in the definition

of a sliding average (18).
The averaging step generally leaves us with two basically different choices, leading to two

classes of methods. Choosing x = xi in (18) gives what is referred to as upwind methods and
choosing x = xi+1/2 gives central (difference) methods, see Figure 3. To see the fundamental
difference between these two classes of methods we look at the temporal integrals in (19). In
the upwind class, the integral of f(u(·, t)) is taken over points xi±1/2, where the piecewise
polynomial reconstruction û(x, tn) is discontinuous. This means that one cannot apply a
standard integration rule in combination with a standard extrapolation. Instead, one must
first resolve the local wave-structure arising due to the discontinuity. This amounts to solving
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Figure 3. Computation of sliding averages for upwind schemes (left) and central
schemes (right).

a so-called Riemann problem. We will come back to this briefly below. For the central
methods, the sliding average is computed over a staggered grid cell [xi, xi+1], which means
that the flux integral is evaluated at the points xi and xi+1, where the initial data û(x, tn) is
smooth. If the discretisation parameters satisfy a CFL condition, which states that λ times
the maximum local wavespeed is less than one half, the solution û(x, t) will remain smooth at
these points for t ∈ [tn, tn +∆t]. The flux integral can thus be computed using some standard
integration scheme in combination with a straightforward extrapolation according to (1).

6.1. High-resolution central schemes. The classical example of a central difference scheme
is the Lax–Friedrichs scheme, as given in (11). The Lax–Friedrichs scheme has a staggered
version, which can be derived within the Godunov-framework introduced in Section 6 if we
assume a piecewise constant reconstruction and use a one-sided quadrature rule for the flux
integrals in (19)

un+1
i+1/2 = 1

2

(
un

i + un
i+1

)
− λ

[
f(un

i+1)− f(un
i )

]
,

The scheme is stable under the CFL restriction (∆t/∆x) maxu |f ′(u)| ≤ 1/2. Notice that this
scheme can be converted to a nonstaggered scheme by averaging the staggered cell-averages
over the original grid

un+1
i = 1

2

(
un+1

i−1/2 + un+1
i+1/2

)
= 1

4

(
un

i−1 + 2un
i + un

i+1

)
− 1

2λ
[
f(un

i+1)− f(un
i−1)

]
,

which is almost on the same form as the Lax–Friedrichs given in (11).
As an example of high-resolution schemes, we will now derive the second-order exten-

sion of the staggered Lax–Friedrichs scheme as introduced by Nessyahu–Tadmor [21]. This
scheme, henceforth referred to as NT, is the simplest possible example of high-resolution
central schemes.

For simplicity, we first consider the scalar case. Assume a grid with uniform cell size ∆x.
Let un

i approximate the cell-average over the ith cell [xi−1/2, xi+1/2] at time tn = n∆t and
un+1

i+1/2 the cell-average over the staggered cell [xi, xi+1] at time tn+1 = (n + 1)∆t. Since we
seek a second-order method, the scheme starts with a piecewise linear reconstruction,

ûi(x, tn) = un
i + (x− xi)si, x ∈ [xi−1/2, xi+1/2].

If we now insert this into (19) and evaluate the sliding average over the staggered grid cell,
we obtain

un+1
i+1/2 =

∫ xi+1

xi

û(x, t) dx− 1
∆x

∫ tn+1

tn

[
f(û(xi+1, t))− f(û(xi, t))

]
dt

=
1
2
(
un

i + un
i+1

)
+

∆x
8

(
si − si+1

)
− 1

∆x

∫ tn+1

tn

[
f(û(xi+1, t))− f(û(xi, t))

]
dt.
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It turns out that it is sufficient to approximate the flux integrals by the midpoint rule to
obtain second-order accuracy; that is, we set∫ tn+1

tn

f(û(xi, t)) dt ≈ ∆tf(û(xi, tn + 1
2∆t)),

and similarly at point x = xi+1. To complete the scheme, we need to determine how to
compute the point-values û(xi, tn+1/2) and û(xi+1, tn+1/2). If we now assume that the dis-
cretisation satisfies a CFL condition (∆t/∆t) max |f ′(u)| ≤ 1/2, the solution û(·, t) will be
continuous at the midpoints. Thus, we can use an extrapolation of (1) in time using a Taylor
series

û(xi, tn+1/2) ≈ û(xi, tn)− ∆t
2
f(û(xi, tn))x ≈ un

i −
∆t
2
σi.

The flux gradient σi can either be computed as f ′(un
i )si or as the slope from a piecewise linear

reconstruction of the fluxes of the cell averages. (The careful reader will have noticed that for
a piecewise linear reconstruction, the cell averages un

i coincide with the point values û(xi, tn)).
This is almost the full story of the scheme. The only delicate point we have not touched is
how to compute the slopes si in the piecewise linear reconstructions. A natural candidate
is, of course, to use discrete differences, either either one-sided or central differences. This
means that the slopes si could be given by any of the formulas

s−i = un
i − un

i−1, s+i = un
i+1 − un

i , sc
i =

1
2
(
un

i+1 − un
i−1

)
.

Whereas the two one-sided differences are first order approximations for smooth data, the
central difference is second order and would generally be the preferred choice. However, one
can show that all three choices lead to schemes that are formally second-order accurate on
smooth solutions of (1). For discontinuous solutions, on the other hand, using any of the
three approximations may lead to the formation of unphysical oscillations that spread out
from a discontinuity, as seen in Examples 1 and 2. For scalar equations, the corresponding
schemes will violate two fundamental properties of the physical solution: boundedness in
L∞ and bounded variation. To illuminate this point, let us consider the following set of cell
averages

un
i =

{
1, i ≤ k,

0, i > k.

for which we have
s−k = 0, s+k = −1, sc

k = −1
2 .

Obviously, a new maximum will be introduced in û(x, tn) for the two candidate slopes s+k
and sc

k. Similarly, if the function un
i is reversed from a backward to a forward step, both

s−k and sc
k will introduce new extrema. The formation of new extrema, and the resulting

creation of unphysical oscillations, can of course be completely avoided if we use a piecewise
constant approximation, but then the formal order of the scheme would be reduced to first
order. Altogether, this suggests that we should try to put some more intelligence into the
scheme and use the local behaviour of the cell averages to determine how to compute si. This
“intelligence” comes in the form of a nonlinear function called a limiter ; that is,

(20) si = Φ
(
un

i − un
i−1, u

n
i+1 − un

i

)
, Φ(a, b) = φ

( b
a

)
a.
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This limiter has much of the same purpose as the flux-limiter θ(un; i) introduced at the end
of Section 3.

Under certain restrictions on the function φ, one can show that the resulting scheme has
diminishing total variation; that is,

TV (un+1
i+1/2) =

∑
i

|un+1
i+1/2 − un+1

i−1/2| ≤ TV (un
i ) =

∑
i

|un
i − un

i−1|.

See [17] for a more detailed discussion of the use of limiters for the Nessyahu–Tadmor scheme.
A robust example of a limiter is the minmod limiter

minmod(a, b) =


a, if |a| < |b| and ab > 0
b, if |b| < |a| and ab > 0
0, if ab ≤ 0.

Summing up, we have derived a predictor–corrector scheme of the form

u
n+1/2
i = un

i −
λ

2
σi,

un+1
i+1/2 =

1
2
(
un

i + un
i+1

)
− λ

(
gn
i+1 − gn

i

)
,

gn
i = f(un+1/2

i ) +
1
8λ
si,

si = Φ
(
un

i − un
i−1, u

n
i+1 − un

i

)
σi = Φ

(
f(un

i )− f(un
i−1), f(un

i+1)− f(un
i )

)
(21)

The scheme is formally second order. Moreover, under appropriate assumptions on the time-
step and the limiter function Φ one can prove that this scheme gives solutions that are
bounded by their initial data in L∞ norm and have diminishing total variation. Thus, unlike
the classical second-order schemes, the NT scheme mimics the properties of the exact scalar
solution.

The major advantage of the NT scheme is that it is both compact and simple to implement,
particularly since it does not require the use any characteristic information or solution of local
Riemann problems (see Section 6.2). The only requirement is an estimate of the maximum
wavespeed needed to impose a CFL restriction on the time step.

Example 3. Let us now apply the NT scheme to the linear advection and Burgers’ equation
as considered in Examples 1 and 2. We use two different limiter functions, the dissipative
minmod limiter and the compressive superbee limiter. Figure 4 shows the approximate so-
lutions computed with the same parameters as in Figures 1 and 2, except for the time-step
which is now ∆t = 0.475∆x. The improvement in the resolution is obvious. On the other
hand, we see that there is some difference in the two limiter functions. The dissipative min-
mod limiter always chooses the lesser slopes and thus behaves more like a first-order scheme.
The compressive superbee limiter picks steeper slopes and has a tendency of overcompressing
smooth linear waves, as observed for the smooth cosine profile.

If higher accuracy is wanted, one must use a spatial reconstruction of higher order and a
more accurate temporal extrapolation in terms of more predictor steps like in higher-order
Runge–Kutta methods, see [20, 1, 2, 15]. Similarly, semi-discrete nonstaggered schemes have
been developed, for which only the spatial derivatives are discretised, leading to a set of
ordinary differential equations that can be integrated by an ODE solver [11, 9, 10].
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minmod limiter superbee

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

minmod limiter superbee

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Figure 4. Approximate solutions of the linear advection and Burgers’ equation
computed by the NT scheme with two different limiters.

There are different ways to extend central schemes to systems of conservation laws. The
simplest method is to apply the scheme directly to each component of the vector of unknowns
[21]. This greatly simplifies the implementation of central schemes and is possible since the
schemes do not use the eigenstructure of the underlying system.

To derive high-resolution schemes for conservation laws in multidimensions we can apply
similar ideas. In two spatial dimensions, the conservation law reads

(22) ut + f(u)x + g(u)y = 0, u(x, y, 0) = u0(x, y).

As in one dimension, we introduce the sliding average

ū(x, y, t) =
1

∆x∆y

∫
I(x)

∫
J(y)

u(ξ, η, t) dξdη,

and integrate (22) over the domain I(x) × J(y) × [t, t + ∆t] to derive an evolution equation
for the sliding average

ū(x, t+ ∆t) =ū(x, t)

− 1
∆x∆y

∫ t+∆t

t

∫
J(y)

[
f
(
u(x+ 1

2∆x, y, s)
)
− f

(
u(x− 1

2∆x, y, s)
)]
dyds

− 1
∆x∆y

∫ t+∆t

t

∫
I(x)

[
g
(
u(x, y + 1

2∆y, s)
)
− g

(
u(x, y − 1

2∆y, s)
)]
dxds.
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Secondly, we make a piecewise linear reconstruction in each spatial direction,

ûij(x, y, tn) = un
ij + (x− xi)sx

ij + (y − yj)s
y
ij , (x, y) ∈ [xi−1/2, xi+1/2]× [yj−1/2, yj+1/2].

We now evaluate the sliding average over the staggered grid cell, defined analogously as for the
one-dimensional case, and use the midpoint rule to approximate the flux integrals. Altogether
this gives the two-dimensional version of the Nessyahu–Tadmor scheme [6],

un+1
i+1/2,j+1/2 =

1
4
(
un

ij + un
i+1,j + un

i+1,j+1 + un
i,j+1

)
+

1
16

(
sx
ij + sx

i,j+1 − sx
i+1,j − sx

i+1,j+1

)
+

1
16

(
sy
ij − sy

i,j+1 + sy
i+1,j − sy

i+1,j+1

)
− λ

2

[
f(un+1/2

i+1,j ) + f(un+1/2
i+1,j+1)

]
+
λ

2

[
f(un+1/2

i,j ) + f(un+1/2
i,j+1 )

]
− µ

2

[
g(un+1/2

i,j+1 ) + g(un+1/2
i+1,j+1)

]
+
µ

2

[
g(un+1/2

i,j ) + g(un+1/2
i+1,j )

]
,

u
n+1/2
ij =un

ij −
λ

2
σx

ij −
µ

2
σy

ij ,

(23)

where λ = ∆t/∆x, µ = ∆t/∆y. As for its one-dimensional counterpart, the scheme is
compact and easy to implement, can be applied to systems in a componentwise fashion, and
has fairly good accuracy.

High-resolution central schemes have seen a rapid development since the late 90ties and
are established as simple, but versatile schemes for integrating conservation laws in several
dimensions. We refer the reader to [22] for a complete overview of extensions to higher
order, unstructured grids, semi-discrete versions, and applications proving the versatility of
the schemes.

6.2. High-resolution upwind schemes. To derive upwind schemes, we return to the slid-
ing average in (18) Let us for simplicity assume that the reconstructed function û(x, tn) is
piecewise constant. To evolve the solution, we see from Figure 3 that in order to compute
the integral of the flux function over the cell boundaries, we must solve a series of simple
initial-value problems of the form,

ut + f(u)x = 0, u(x, 0) =

{
uL, x < 0,
uR, x > 0.

This is commonly referred to as a Riemann problem, which has a self-similar solution of the
form u(x, t) = v(x/t;uL, uR) and consists of a set of constant states separated by simple
waves (rarefaction, shocks and contacts). Since a hyperbolic equation has finite speed of
propagation, the global solution û(x, t) for sufficiently small t can be constructed by piecing
together the local Riemann solutions. In general it can be quite complicated to solve this
Riemann problem, at least for systems of conservation laws. However, to compute the flux
integrals in (19) we only need the solution of the Riemann problem along the ray x/t = 0,
where the solution is constant u(0, t) = v(0;uL, uR). Thus, the general form of the upwind
Godunov-methods reads

(24) un+1
i = un

i − λ
[
f
(
v(0;un

i−1, u
n
i )

)
− f

(
v(0;un

i , u
n
i+1)

)]
.
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A specific scheme is obtained by devising a method to compute the (approximate) solution
of the local Riemann problems.

Example 4. Let us consider a convex flux function that satisfies f ′′(u) > 0 (the case f ′′(u) <
0 is similar). In this case the Riemann solution consists of either a single rarefaction wave
or a single shock. If f ′(u) is either strictly positive or strictly negative, the single wave will
move to one side only, and the Godunov scheme simplifies to the upwind scheme (10). If
not, the solution must consist of a rarefaction wave moving in both the positive and negative
direction. Inside the rarefaction wave there is a single sonic point us where f ′(us) is zero, and
the wave is therefore called a transonic rarefaction wave. Summing up our observations, the
Godunov flux reads

Fn
i+1/2 =


f(un

i ), si+1/2 > 0 and un
i > us

f(un
i+1), si+1/2 < 0 and un

i+1 < us

f(us), un
i < us < un

i+1.

Here si+1/2 = [f(un
i+1) − f(un

i )]/(un
i+1 − un

i ) is the Rankine–Hugoniot speed associated with
the jump. A similar formula holds for the case when f ′′(u) < 0.

The Godunov flux derived in the above example can be written in a more compact form,
which is also valid for an arbitrary nonconvex flux function f(u)

(25) Fn
i+1/2 =

{
minu∈[un

i ,un
i+1] f(u), un

i ≤ un
i+1,

maxu∈[un
i+1,un

i ] f(u), un
i ≥ un

i+1.

If f(u) is nonconvex, the flux may have several sonic points, one at each of its local critical
points.

Working with the exact Godunov flux in an actual implementation is a bit cumbersome
since the formula requires the computation of the minimum or maximum of f(u) over an
interval. It is therefore customary to replace the formula (25) with another formula based
upon an approximation to the Riemann problem. This approach is also much easier to
generalise to systems of conservation laws.

Let us first assume that the solution is a continuous wave (i.e., a rarefaction wave). This
gives the Engquist–Osher scheme, which is a natural extension of the upwind scheme to
nonconvex flux functions. The Engquist–Osher flux function reads

(26) Fn
i+1/2 = f(0) +

∫ un
i

0
max(f ′(v), 0) dv +

∫ un
i+1

0
min(f ′(v), 0) dv.

Alternatively, we can approximate the Riemann problem by a single shock. Then the flux
can be written as

Fn
i+1/2 = f(un

i ) + s−i+1/2(u
n
i+1 − un

i ),

or alternatively as
Fn

i+1/2 = f(un
i+1)− s+i+1/2(u

n
i+1 − un

i ).

Here s+ = max(s, 0) and s− = min(s, 0). By averaging the equivalent expressions we obtain
the numerical flux

Fn
i+1/2 = 1

2

[
f(un

i ) + f(un
i+1)− |si+1/2|(un

i+1/2 − un
i )

]
.

This can be interpreted as a central flux approximation plus a viscous correction with coef-
ficient |si+1/2|. The formula can quite easily be extended to systems of equations and gives
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what is commonly referred to as the Roe linearisation of the Riemann problem. For transonic
waves the coefficient si+1/2 may vanish or be close to zero and the added dissipation is insuf-
ficient to stabilise the computation. It is therefore customary to add extra dissipation in the
form of an entropy fix. For more details, consult for instance [14].

High-resolution versions of the upwind schemes can be obtained by using a higher-order
reconstruction of the cell averages. This is beyond the scope of the exposition. The interested
reader can find details in the books by Godlewski and Raviart [4], Holden and Risebro [5],
Kröner [7], LeVeque [13, 14], and Toro [23].
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