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Abstract

Mathematical modeling of pharmacokinetics / pharmacodynamics (PKPD) is an impor-
tant and growing field in drug development. In this work we develop preclinical PKPD
models based on fundamental biological and pharmacological principles.

Equipped with a PKPD model, different dosing schedules could be simulated and
therefore, a valuable contribution to first in human dose selection could be achieved.

We consider different mathematical model figures and discuss the properties and
biological basis. Such tools serve as modules for a final PKPD model. We apply ordinary
and delay differential equations and especially focus on modeling of delays and lifespans
in populations. We show a fundamental relationship between transit compartments
and lifespan models. Moreover, we investigate the weighted least squares estimator and
derive statistical characteristics of model parameter.

We present a PKPD model to describe tumor growth and anticancer effects for
mono- and combination therapy. Further, we construct a PKPD model for arthritis
development and antibody effects.

Summarizing, we develop (semi)-mechanistic mathematical PKPD models based
on pharmacological assumptions and apply our models to measured data from preclinical
phase.



Zusammenfassung

Ein wichtiges und wachsendes Gebiet in der Medikamentenentwicklung ist die math-
ematische Modellierung der Pharmakokinetik / Pharmakodynamik (PKPD). In der
vorliegenden Arbeit entwickeln wir präklinische PKPD Modelle basierend auf grundle-
genden biologischen und pharmakologischen Prinzipien.

Mit einem PKPD Modell können verschiedenste Dosierungen simuliert werden und
somit ein wertvoller Betrag bei der Suche nach einer Dosis für den Menschen geleistet
werden.

Wir betrachten verschiedene mathematische Modelltypen die als Bausteine für ein
finales PKPD Modell dienen und diskutieren deren Eigenschaften sowie die biologische
Basis. Es werden gewöhnliche und verzögerte Differentialgleichungen verwendet mit einer
speziellen Ausrichtung auf die Modellierung von Verzögerungen sowie der Lebensdauer
von Objekten in Populationen. Die Arbeit beinhaltet ein grundlegendes Ergebnis über
die Beziehung zwischen Transit Kompartimenten und Modellen mit Lebensdauern. Des
weiteren zeigen wir Eigenschaften des gewichteten Kleinsten-Quadrate-Schätzers und
leiten statistische Kenngrößen für Modellparameter her.

Wir präsentieren ein PKPD Modell für das Wachstum von Tumoren und den Ef-
fekt von Krebsmedikamenten in der Mono- und Kombinationstherapie. Außerdem
konstruieren wir ein PKPD Modell für die Entwicklung von Arthritis und für den Effekt
eines Antikörpers auf die Krankheit.

Zusammengefasst werden in dieser Arbeit (semi-)mechanistische mathematische PKPD
Modelle basierend auf pharmakologischen Annahmen entwickelt und auf präklinische
Daten angewendet.
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Chapter 1

Introduction

The development of drugs is time-consuming and costly. A study [DHG03] from 2003
reports costs of approximately US$ 800 million to bring a drug to the market. It is esti-
mated that around 90 percent of compounds (drug candidates) will fail during the drug
development process. Hence, the drug-producing industry is in search of new tools to sup-
port drug development. It is stated by the U.S. Food and Drug Administration (FDA)
that computational modeling and simulation is a useful tool to improve the efficiency in
developing safe and effective drugs, see [GM01].

The complete process of drug development consists of a preclinical and clinical part.
In preclinics, different compounds are tested for an effect in animals. The clinical part is
divided into three phases. In phase I, the drug is tested in healthy humans for physiolog-
ical compatibility. In phase II, the pharmacological / therapeutic effect is investigated.
In phase III, the drug is tested in thousands of patients. In Figure 1.1 the time course of
drug development is schematically visualized.

An experiment in drug development consists of two parts. The pharmacokinetics (PK)
describes the time course of drugs. The pharmacodynamics (PD) is the study of the phar-
macological effect of drugs. It is believed "that by better understanding of the relationship
between PK and PD one can shed light on situations where one or the other needs to be
optimized in drug discovery and development", see [VDGG09].

In this work we develop mathematical pharmacokinetic / pharmacodynamic models based
on preclinical experiments. Such models are used to describe measurements, to categorize
the pharmacological effect of different compounds, to simulate different dosing schedules
(e.g. for first-in-human dose selection) and also to understand underlying mechanisms of
disease and drug response. Hence, mathematics has an important impact on drug devel-
opment and it is commonly believed that the role of mathematical modeling will further
increase, see [KD03]. However, it is self-evident that PKPD models have to be based on
fundamental biological and pharmacological principles and therefore, the development of
such models is in general performed in an interdisciplinary collaboration.
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Chapter 1. Introduction

In Chapter 2 we give a brief introduction to pharmacological terms and differential equa-
tions. In Chapter 3 typical pharmacokinetic compartment models are introduced. In
the next Chapter 4 we derive several models based on biological and pharmacological
principles and present theoretical mathematical results. Chapter 5 deals with statistical
properties of model parameter estimates. Finally, we develop a PKPD model for tumor
growth for mono- and combination therapy in Chapter 6 and also derive a PKPD model
for arthritis development with antibody effects in Chapter 7.
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Figure 1.1: Schematic overview of drug development.

Several parts of this work are already published in the Journal of Pharmacokinetics and
Pharmacodynamics, see [KWLS09], [KWPZ+12] and [KS12]. The presented work was
mainly developed as part of the collaboration Numerical simulation of drug designing
experiments (Project no. 735/06) between the University of Konstanz and Nycomed (A
Takeda Company).
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Chapter 2

Introduction to Drug and Disease

Modeling

In this chapter we give a brief introduction to principles of drug and disease modeling.
We will define necessary pharmacological terms and also present typical assumptions from
drug development. Further, a general mathematical structure of our models is presented.

2.1 Typical pharmacological assumptions and necessary

terms

An experiment in the preclinical phase consists of two parts.

The first part deals with the time course of the drug concentration in blood. The in-
terest is on the distribution of the drug in the body. In this part one does not consider
the disease or the effect of the drug on the disease. Roughly spoken, one observes what
the body does to the drug. This part is called pharmacokinetics.

The second part observes the development of the disease and the pharmacological ef-
fect of the drug on the disease, also called drug response. Again roughly spoken, this time
one observes what the drug does to the body. This part is called pharmacodynamics.

Combining pharmacokinetics (PK) and pharmacodynamics (PD) gives an overall pic-
ture of the drug response. In PKPD it is assumed that the drug concentration is the
driving force of the pharmacological effect on the disease.

A PKPD experiment consists of pharmacokinetic and pharmacodynamic measurements
performed in a population of individuals. Typically, the PK data is sparse because blood
samples at each measurement time point have to be taken from the individuals. In PD
the disease development is described by appropriate readouts. For example, in our ex-
periments, the cancer development was described by the weight of the tumor and, in the
arthritis experiments, visual scores describing inflammation and bone destruction were
applied. Roughly, one could say that our PD measurements are performed "from the
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Mathematical structure of a PKPD model

outside".

To get a realistic overview of the effect of the drug, different doses should be admin-
istered in an experiment. The PD data describing the disease with an administered drug
is called perturbed. Also a placebo is administered to describe the disease development
with no effect of the drug, called unperturbed data. We call the data from one dosing
schedule (also including placebo administration) a dosing group. Normally, a dosing group
consists of ten animals in our experiments.

When building a PKPD model, the first step is to describe and to fit the PK of a drug.
In Chapter 3 we present the modeling of PK with typical linear differential equations.
The second and difficult step is to model the disease development. Here it is necessary
to understand the mechanism of the disease. We will present in Chapter 4 appropriate
model figures based on fundamental biological and pharmacological principles. The final
step is to include the PK into the disease development model in order to describe the
pharmacological effect. It is obvious that realistic modeling is only possible in close inter-
disciplinary collaboration.

In this work we focus on so-called (semi-)mechanistic mathematical models. Such models
primarily describe the underlying biological situation by first principles and as a result
the available data. We are not considering models that just characterize the data without
biological assumptions.

We say that a mathematical PKPD model is predictive, if it describes all available dosing
groups from one experiment simultaneously by a single model parameter set. The only
parameter which varies over the different dosing groups is dose or more precisely, the dos-
ing schedule. With a predictive model, simulations for different dosing schedules could be
performed. Also for inter-specific scaling of physiological parameters a predictive PKPD
model is necessary.

2.2 Mathematical structure of a PKPD model

In this work the general form of a PKPD model is a non-autonomous delay differential
equation

x′(t) = f (t, x(t), x(t − T )) (2.1)

with the initial function

x(s) = φ(s) for − T ≤ s ≤ 0 . (2.2)

The parameter T > 0 is called a delay. At the moment we suppress additional PKPD
model parameter in formulation (2.1)-(2.2).

Note the difference to ordinary differential equations, where x(t − T ) does not appear
on the right hand side of (2.1) and the initial condition (2.2) is an initial value at t0 = 0.

12



Mathematical structure of a PKPD model

The main aim of this work is the design of the right hand side in (2.1) to describe PKPD
experiments based on fundamental biological and pharmacological principles. Chapter 3
and 4 deals with the derivation of (semi-)mechanistic models. In Chapter 6 and 7, con-
crete PKPD experiments are modeled.

In PKPD experiments delays are often observed. For example, the effect of a drug is
delayed or high concentrations of messengers in the body cause a delayed development of
a disease. One major aim of this work is to capture such phenomena by delay differential
equations (DDE). In Figure 2.1, we schematically present the standard PKPD approach
and indicate possible delays.

Pharmacokinetics Pharmacodynamics

dose Drug

concentration
Readout  

Effect

Additional

Readout  

Effect

Possible Delay Possible Delay

Figure 2.1: Schematic overview of PKPD principles. Dose drives the drug concentration
visualized by the blue curve. The drug concentration (measured in blood) cause an effect
(perturbed data, green curve) on the disease (unperturbed data, red curve) with a possible
delay. Further also a strongly delayed second response is plotted.

Until now mainly ordinary differential equations (ODE) are used to build PKPD models
in industry as well as in academics. However, we remark that the application of DDEs is of
course not new in PKPD. Already in 1982, Steimer et al [SPGB82] presented a model for
pharmacokinetics based on DDEs. But somehow DDEs were neglected in PKPD modeling
in the last decades and delays were produced by cascades of ODEs. Quite recently, the
work of Krzyzanski, Jusko and coworkers (see e.g. [KRJ99], [PRKC+05], [KWJ06] etc. )
about lifespan modeling in populations brought DDEs up again to the PKPD community.

A typical existence and uniqueness result for delay differential equations is of the fol-
lowing form.
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Mathematical structure of a PKPD model

Theorem 2.2.1
Let f(t, u, v) be continuous on Q = {(t, u, v) | 0 ≤ t ≤ tend , u, v ∈ R

n} and satisfy a
Lipschitz-condition regarding to u and v. Let the initial function φ(s) be continuous for
−T ≤ s ≤ 0 with T > 0. Then

x′(t) = f(t, x(t), x(t − T )) , x(s) = φ(s) for − T ≤ s ≤ 0 (2.3)

has a unique solution for [0, tend].

A proof based on the contraction mapping principle could be found in [El’73].

Delay differential equations could be rewritten as a system of ordinary differential equa-
tions by the method of steps, see e.g. [Dri77]. In Section 4.5 we present a rough catego-
rization of typical PKPD models in DDE form and apply the method of steps to rewrite
the models as ODEs.
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Chapter 3

Pharmacokinetic Modeling

3.1 Introduction

The pharmacokinetics (PK) describes the behavior of an administered drug in the body
over time. The effect of the drug on the disease is not subject of pharmacokinetics. In de-
tail, the PK characterizes the absorption, distribution, metabolism and excretion (called
ADME concept, see e.g. [GW06]) of a drug.

The German pediatrist F. H. Dost is deemed to be the founder of the term pharma-
cokinetics. In his famous books "Der Blutspiegel" from 1953 [Dos53] and "Grundlagen
der Pharmakokinetik" from 1968 [Dos68], he presented a broad overview and analysis of
drug behavior in time. For example, he applied linear one-compartment models to de-
scribe different drugs and derived several physiological characteristics. However, already
in 1937 the Swedish physiologist T. Teorell published first compartment models repre-
senting the circulatory system, see [Teo37a], [Teo37b].

The aim of this chapter is to introduce the concept of pharmacokinetic modeling and
to motivate the typical structure of PK compartment models. We mainly focus on two-
compartment models based on linear differential equations with either intravenous injec-
tion or oral absorption of a drug. In this approach, one compartment describes the blood
and the other is identified with tissue or more general, with the part of the body which is
not heavily supplied with blood. Note that for drug concentration measurements blood
samples have to be taken from the patients and therefore, the amount of data is often
sparse. Further, measurements in other parts of the body than blood is in the majority
of cases impossible. It turned out in practice that two compartments are sufficient to
appropriatly describe the time course for most drugs.

This chapter is structured as follows. Firstly, we present in Section 3.2 a general mo-
tivation and also typical pharmacological properties and assumptions. In the next step
we calculate the explicit solution of the blood compartment by the Laplace transform.
We present different parameterizations and important secondary parameter of the two-
compartment model to characterize the drug from a physiological point of view. In the
next Section 3.3 we present the concept of multiple dosing. Here we focus on n-dimensional
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Two-compartment pharmacokinetic models

PK compartment models. Finally, we present an example of pharmacokinetic data from
our experiments described by a two-compartment model.

3.2 Two-compartment pharmacokinetic models

3.2.1 Assumptions and model building

A two-compartment model consists of two physiological meaningful parts (see e.g. [Kwo01]):

• The first (central) compartment x1 is identified with the blood and organs heavily
supplied with blood like liver or kidney.

• The second (peripheral) compartment x2 describes for example tissue or more gen-
erally, the part of the body which is not heavily supplied with blood.

The compartments are connected among each other in both directions and therefore, a
distribution between the central and the peripheral compartment takes place.

Main assumption in pharmacokinetics:

• The drug is completely eliminated (metabolism and excretion) from the body through
the blood compartment. In most cases, the metabolism takes place in the liver and
the excretion via the kidneys.

We consider two different types of drug administration (absorption):

• The drug is directly administered by an intravenous bolus injection (i.v.) into the
blood. It is assumed that the drug is immediately completely distributed in the
blood.

• The drug is orally (p.o.) administered by a tablet. Hence, absorption through the
stomach takes place. Therefore, the distribution is not immediate and further, only
a part of the amount of drug will reach the blood circulation (called bioavailability).

A schematic overview of the two-compartment model is presented in Figure 3.1. To

10k

2x1x
12k

21k

BCDEF CGHIJKLKMENOEKCL PQRS

Figure 3.1: General scheme of the two-compartment model.
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Two-compartment pharmacokinetic models

i.v. administration p.o. administration

k10, k12, k21 > 0 and k31 ≡ 0 k10, k12, k21, k31 > 0

xiv(0) = (x0
1, 0, 0) xpo(0) = (0, 0, x0

3)

Table 3.1: Different settings for (3.1)-(3.3) or (3.4) to present either i.v. or p.o. admin-
istration.

shorten the notation, we consider the i.v. and p.o. administration at ones. The general
form of a two-compartment model describing either i.v. or p.o. drug administration reads

x′
1(t) = −k10x1(t) − k12x1(t) + k21x2(t) + k31x3(t) , x1(0) = x0

1 ≥ 0 (3.1)

x′
2(t) = k12x1(t) − k21x2(t) , x2(0) = 0 (3.2)

x′
3(t) = −k31x3(t) , x3(0) = f · x0

3 ≥ 0 (3.3)

where 0 < f ≤ 1 is a fraction parameter regulating the amount of drug which effec-
tively reaches the blood in case of p.o. administration (bioavailability). We set without
loss of generality f ≡ 1 for our mathematical consideration. (3.1) describes the blood
compartment, (3.2) the peripheral compartment and (3.3) the absorption in case of p.o.
administration. The parameter k10 describes the elimination from the body. The rates
k12 and k21 stand for the distribution between central and peripheral compartment and
k31 is the absorption rate in case of p.o.. Note that the third absorption compartment for
p.o. does not count for the nomenclature of the model.

In matrix notation, (3.1)-(3.3) reads with x ∈ R
3

x′(t) =



−k10 − k12 k21 k31

k12 −k21 0
0 0 −k31




︸ ︷︷ ︸
=:A

·x(t) , x(0) =




x0
1

0
f · x0

3


 . (3.4)

In Table 3.1, the different settings for (3.1)-(3.3) or (3.4) to realize either i.v. or p.o.
administration are presented.

Remark 3.2.1
Note that the eigenvalues of the submatrix

B =

(
−k10 − k12 k21

k12 −k12

)

are real because T−1BT = C is symmetric with

T =

(
1 0
0

√
k12k21

)
.

17



Two-compartment pharmacokinetic models

Although (3.4) is a linear homogeneous differential equation the representation (3.4) is
unhandy in application. In a fitting process the blood compartment x1(t) has to be
evaluated in each iteration at the different measurement time points. If a gradient based
optimization method is used, then the gradient of x1(t) has to be calculated. Further in
case of multiple dosing, the representation (3.4) is not adequate. Finally, in a full PKPD
model the PK has to be calculated in a tremendous number. Hence, the need for the
analytical solution of x1 is evident.

3.2.2 Analytical solution

We calculate the analytical solution of the blood compartment x1(t) of (3.4) by the Laplace
transform L.

The Laplace transform (see [Wid66] or [Doe76]) is an integral transform where the linear
operator L{f(t)} transforms a function f(t) with t ∈ R≥0 from the time domain to a
function F (s) with s ∈ C in a so-called image domain. The advantage of this transfor-
mation is that differentiation and integration in the time domain corresponds to simple
algebraic operations in the image domain, for more details see Appendix A.

Applying the Laplace transform to (3.4) gives

L{x′(t)} = L{Ax(t)} ⇐⇒ sX(s) − x(0) = AX(s)

⇐⇒ (sI − A)X(s) = x(0)

⇐⇒




s + k12 + k10 −k21 −k31

−k12 s + k21 0
0 0 s + k31




︸ ︷︷ ︸
=:L(s)




X1(s)
X2(s)
X3(s)




︸ ︷︷ ︸
=:X(s)

=




x0
1

0
x0

3




︸ ︷︷ ︸
=:b

⇐⇒ L(s) · X(s) = b . (3.5)

We solve the system of equations (3.5) by Cramer’s rule. The determinant of L(s) reads

det(L(s)) = det(sI − A) = (s + k31) [(s + k12 + k10)(s + k21) − k21k12]

= (s + k31)
[
s2 + s(k21 + k12 + k10) + k10k21

]

= (s + k31)(s + α)(s + β)

where

α, β =
1

2

(
k12 + k21 + k10 ±

√
(k12 + k21 + k10)2 − 4k21k10

)

and hence

αβ = k21k10 and α + β = k12 + k21 + k10 . (3.6)

By Remark 3.2.1 together with (3.6) we have α, β ∈ R>0 and therefore, det(L(s)) =
(s + k31)(s + α)(s + β) > 0 for all s ≥ 0.
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Two-compartment pharmacokinetic models

To calculate the solution of the central compartment x1 we substitute the vector b into the
first column of the matrix L(s) and denote the resulting matrix by L1(s). The quotient
from Cramer’s rule reads

X1(s) =
det(L1(s))

det(L(s))
.

Now we exemplarily consider the i.v. case. Here the absorption compartment does not
exists and we obtain det(Liv(s)) = (s+α)(s+β) and det(Liv

1 (s)) = x0
1(s+k21). Therefore,

the Laplace back transform is

L−1{X1(s)} = L−1

{
x0

1(s + k21)

(s + α)(s + β)

}

= x0
1L−1

{
s

(s + α)(s + β)

}
+ x0

1k21L−1

{
1

(s + α)(s + β)

}
.

Because the order of the enumerator polynomial is smaller than the order of the denom-
inator polynomial in each term and the denominator polynomial has distinct roots, we
could apply Heaviside’s theorem (Appendix A). The derivative of the denominator poly-
nomial q(s) = (s + α)(s + β) reads q′(s) = 2s + α + β and therefore, q′(−α) = −α + β
and q′(−β) = −β + α. Hence, we obtain the solution for the first compartment in (3.4)

L−1{X1(s)} = xiv
1 (t) = x0

1

( −α

−α + β
exp(−αt) +

−β

−β + α
exp(−βt)

)

+ x0
1k21

(
1

−α + β
exp(−αt) +

1

−β + α
exp(−βt)

)

and finally

xiv
1 (t) =

x0
1(k21 − α)

β − α
exp(−αt) +

x0
1(k21 − β)

α − β
exp(−βt) . (3.7)

Using the same technique gives for the p.o. case

xpo
1 (t) =

x0
3k31(k21 − α)

(k31 − α)(β − α)
exp(−αt) +

x0
3k31(k21 − β)

(k31 − β)(α − β)
exp(−βt) (3.8)

+
x0

3k31(k21 − k31)

(k31 − β)(k31 − α)
exp(−k31t) .

3.2.3 Micro/macro parameterization and secondary parameters

In practice, the drug is measured as concentration in blood. Therefore, the volume of
distribution V1 > 0 for the central compartment x1(t) is introduced to obtain the drug
concentration

c(t) =
x1(t)

V1

. (3.9)

V1 is a proportionality factor between the amount of drug and the drug concentration. In
this work, c(t) will always denote the drug concentration in blood.
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Two-compartment pharmacokinetic models

Finally, we obtain the model parameters of the two-compartment model (3.4)

θiv
mic = (k10, k12, k21, V1) or θpo

mic = (k10, k12, k21, V1, k31)

which are called the micro constant parameterization. We denote the initial value x0
1 or x0

3

by dose when speaking of concentration terms. Based on (3.7), (3.8) and (3.9) we define

Aiv :=
k21 − α

V1(β − α)
, Biv :=

k21 − β

V1(α − β)

as well as

Apo :=
k31

(k31 − α)
Aiv , Bpo :=

k31

(k31 − β)
Biv .

The parameter

θiv
mac = (Aiv, Biv, α, β) or θpo

mac = (Apo, Bpo, α, β, k31)

are called macro constant parameterization. The i.v. and p.o. model (3.7) and (3.8) in
concentration terms then reads

civ(t) = dose · Aiv · exp(−αt) + dose · Biv · exp(−βt)

and

cpo(t) = dose · Apo · exp(−αt) + dose · Bpo · exp(−βt) − dose · (Apo + Bpo) · exp(−k31t)

because of

k31

k31 − α

k21 − α

(β − α)(k31 − α)
+

k31

k31 − β

k21 − β

(α − β)(k31 − β)
= − k31(k21 − k31)

(α − k31)(β − k31)
.

Remark 3.2.2
Following relationships between micro and macro parameterization are valid:

k21 =
Aivβ + Bivα

Aiv + Biv

, k10 =
αβ

k21

=
Aiv + Biv

Aiv

α
+ Biv

β

, V1 =
dose

doseAiv + doseBiv

and k12 =
AivBiv(β − α)2

(Aiv + Biv)(Aivβ + Bivα)
.

An important pharmacokinetic secondary parameter is the integral of the concentration
c(t). This value is called the area under the curve (AUC).

Remark 3.2.3
The AUCs read

AUCiv
∞ :=

∞∫

0

civ(s) ds =
dose

V1k10

and AUCpo
∞ :=

∞∫

0

cpo(s) ds =
dose

V1k10

.
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Multiple dosing for n-dimensional compartment
models

3.2.4 Physiological parameterization based on the clearance con-

cept and the idea of allometric scaling

The micro / macro parameterization is not physiological interpretable. In this section
we present a physiological meaningful parameterization of the two-compartment model
based on the concept of clearance. Gabrielsson stated in [GW06] that “the clearance is
defined as the volume of blood that is totally cleared from its content of drug”. Hence, one
defines the clearance

Cl := k10V1 .

The inter-compartmental clearance (also called inter-compartmental distribution) from
the central to the peripheral compartment and vice versa reads

Cl12d = k12V1 and Cl21d = k21V2

where V2 denotes the volume of distribution of the peripheral compartment. It yields that

Cl12d = Cl21d =: Cld

see e.g. [Hil04]. Hence, the physiological parameterization reads

θiv
phy = (Cl, Cld, V1, V2) or θpo

phy = (Cl, Cld, V1, V2, k31) .

Finally, we give a short comment on allometric (inter-species) scaling of physiological pa-
rameters like clearance or volume of distribution. First, to perform a scaling, the underly-
ing mechanism in the different species has to be similar. Second, it is commonly believed
that clearance or volume of distribution depend on the body weight w, see [MCM+91]. A
typical allometric model for scaling a physiological parameter y is

y(w) = a · wb (3.10)

where a, b are allometric parameters, see [MCM+91] or [GW06]. It is suggested that at
least 4 to 5 species are necessary to predict from mouse to human. For example, in
[MCM+91] different therapeutic proteins were scaled with (3.10). A typical structure is
mouse, rat, rabbit, monkey and finally human.

3.3 Multiple dosing for n-dimensional compartment

models

The next step to describe the pharmacokinetics of a drug is to handle multiple dosing,
that means, a drug is administered several times to the body. Hence, one has also to
account for the remaining drug concentration in the body from a previous dosage.

In application, a drug is designed for equidistant administration, for example, every day,
every second day, every week and so on. This makes the application of drugs more secure
for patients and therefore, increases the success on the market.
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Multiple dosing for n-dimensional compartment
models

In this section we focus on general n-dimensional linear PK compartment models. A
n-dimensional compartment model is a linear homogenous differential equation

x′(t) = Ax(t) , x(t0) = x0 ∈ R
n (3.11)

with A ∈ R
n,n. The analytical solution is given by the matrix exponential function

x(t) = exp((t − t0)A)x0 .

In a first step, we focus on the general situation of arbitrary dosing time points. We
denote by π = (π1, ..., πm) ∈ R

m
≥0 the different dosing time points with πk−1 < πk for k ∈

{2, ...,m}. By δj ∈ R
n we denote the doses for every compartment for j = 1, ...,m. Now,

xj ∈ R
n describes the j-th dosage and not the scalar compartment of the n-dimensional

compartment system.

Proposition 3.3.1
The multiple dosing formula for a linear homogenous differential equation (3.11) reads

x(t) =





0 for 0 ≤ t < π1

x1(t) for π1 ≤ t < π2

...

xm(t) for πm ≤ t

(3.12)

with

xj(t) =

j∑

i=1

exp((t − πi)A)δi ∈ R
n . (3.13)

Proof: We have

lim
tրπj

x(t) = lim
tրπj

xj−1(t) = xj−1(πj) and lim
tցπj

x(t) = lim
tցπj

xj(t) = xj(πj) .

Hence, we have to show that

lim
tցπj

x(t) − lim
tրπj

x(t) = xj(πj) − xj−1(πj) = δj .

This follows by

xj−1(πj) + δj =

j−1∑

i=1

exp((πj − πi)A)δi + δj =

j−1∑

i=1

exp((πj − πi)A)δi + exp((πj − πj)A)︸ ︷︷ ︸
=I

δj

=

j∑

i=1

exp((πj − πi)A)δi = xj(πj) .

¤
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Multiple dosing for n-dimensional compartment
models

Based on the representation (3.12)-(3.13) one could easily code an algorithm for mul-
tiple dosing.

Now we consider equidistant dosing intervals with an equal amount for all doses. As men-
tioned before, this situation is the realistic scenario in drug development. Let τ ∈ R>0

be the length of the dosing interval and d ∈ R
n
≥0 the dose. Further, let t0 = 0 be the first

dosing time point.

We assume:

(A1) The eigenvalues of the matrix A are single, mutually distinct, real and negative.

This assumption is fulfilled for typical PK compartment models of mammillary or cate-
nary type, compare [GP82] and [And83].

Applying the spectral theorem gives σ(I − exp(τA)) > 0 for τ > 0 and therefore, the
invertibility of I − exp(τA) for τ > 0.

Remark 3.3.2
Let (A1) hold. With equidistant dosing time points j · τ , j ∈ {1, ...,m} and equal dose d
one obtains for (3.13) the representation

x̃j(ξ) = exp(ξA)(I − exp(jτA)) (I − exp(τA))−1 d (3.14)

for ξ ∈ [0, τ ].

Proof: With (3.13) for s ∈ [πj, πj+1]

xj(s) =

j∑

i=1

exp((s − πi)A)d

= exp((s − πj)A)
(
exp((πj − π1)A) + · · · + exp((πj − πj−1)A) + exp((πj − πj)A)

)
d

= exp((s − πj)A)
(
exp((j − 1)τA) + · · · + exp(τA) + I

)
d

= exp((s − πj)A)

(
j−1∑

k=0

exp(kτA)

)
d .

With the geometric series for matrices

xj(s) = exp((s − πj)A)

(
j−1∑

k=0

exp(τA)k

)
d

= exp((s − πj)A)
(
I − exp(τA)j

)
(I − exp(τA))−1 d

for s ∈ [πj, πj + τ ]. Hence, with ξ ∈ [0, τ ]

x̃j(ξ) = exp(ξA) (I − exp(jτA)) (I − exp(τA))−1 d .

¤
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Multiple dosing for n-dimensional compartment
models

The representation (3.14) for ξ ∈ [0, τ ] is the generalized standard version used in phar-
macokinetic modeling for multiple dosing, see [GP82]. Note that in (3.12)-(3.13)

xj(t) = x̃j(t − (j − 1)τ) for j = 1, ...,m.

An important situation in PK experiments is the so-called steady state concentration
that means, if the number of equidistant administration tends to infinity. Because of
assumption (A1), we have Re σ(A) < α < 0 and therefore, || exp(tA)|| ≤ exp(tα) for all
t ∈ R>0, see [Ama95]. Hence,

exp(tA) → 0 for t → ∞.

The steady state function reads

x̃∗(ξ) := lim
j→∞

x̃j(ξ) = exp(ξA) (I − exp(τA))−1 d for ξ ∈ [0, τ ] .

In application, the steady state concentration is for example used to predict an appropriate
dose for human based on inter-specific scaling. Therefore, we finally present an important
property of equidistant dosing. With this feature the area under the curve of the steady
state concentration for multiple dosing could be calculated based on just a single dose
experiment.

Remark 3.3.3
Let (A1) hold. It yields for a single drug administration x(t) = exp(tA)d that

∞∫

0

x(s)ds =

τ∫

0

x̃∗(s)ds .

Proof: The area under the curve of single drug administration is

∞∫

0

x(s)ds =

∞∫

0

exp(sA)d ds =
[
A−1 exp(sA)d

]∞
0

= −A−1d .

For the steady state function we obtain

τ∫

0

exp(sA) (I − exp(τA))−1 ds

=
[
A−1 exp(sA) (I − exp(τA))−1]τ

0

= A−1 exp(τA) (I − exp(τA))−1 d − A−1 (I − exp(τA))−1 d

=
(
A−1 exp(τA) − A−1

)
(I − exp(τA))−1 d

= −A−1 (− exp(τA) + I) (I − exp(τA))−1 d

= −A−1d .

¤
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Multiple dosing for n-dimensional compartment
models

Note that the steady state concentration is a theoretical result for j → ∞ and in practice
one has for the drug concentration in blood

lim
t→∞

c(t) = 0 .

Example 3.3.4
Consider the two-compartment model with single p.o. administration

c(t) = dose · Apo · exp(−αt) + dose · Bpo · exp(−βt) − dose · (Apo + Bpo) · exp(−k31t) .

Following the results presented in this section, we obtain the multiple dosing representa-
tion for equidistant dosing time points

cj(ξ) = dose · Apo ·
1 − exp(−τjα)

1 − exp(−τα)
exp(−αξ) + dose · Bpo ·

1 − exp(−τjβ)

1 − exp(−τβ)
exp(−βξ)

− dose · (Apo + Bpo) ·
1 − exp(−τjk31)

1 − exp(−τk31)
exp(−k31ξ)

with ξ ∈ [0, τ ] for the j-th dosing time point.

The property of Remark 3.3.3 is visualized in Figure 3.2.

0 5 10 15 20 25 30
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0.3
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Time t

c(
t)

0 ≤ s ≤ tau

Figure 3.2: Property of Corollar 3.3.3 for the two-compartment p.o. model from Example
3.3.4.
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Example for pharmacokinetic data of an antibody

3.4 Example for pharmacokinetic data of an antibody

We consider the GM-CSF monoclonal antibody 22E9 administered in mice, see Chapter
7 or [KWPZ+12] for more details. The antibody was applied several times with four
different doses, see Table 3.2.

To simultaneously fit the measured data, the multiple dosing formula (3.12)-(3.13) with a
two-compartment model i.v. in macro parameterization was used. In the fitting process
the data was weighted, see Table 3.2, which equals their contribution to the model, see
Chapter 5. In Table 3.3, the parameter estimates in the macro parameterization and in
the equivalent physiological parameterization are presented. Additionally, we indicate the
coefficient of variation, the 95%-confidence interval and the coefficient of determination,
see Chapter 5 for more details. The simultaneous fit is presented in Figure 3.3.

Dose (mg/kg) 100 10 1 0.1

Time Points (hr) 0, 336 0, 168, 336 0, 168, 336 0, 168, 336

Weights 0.1 1 10 100

Table 3.2: Dose and dosing time points of the antibody 22E9. Further the weights used in
the fitting process are listed.

Macro constants Value (CV%) CI

Aiv 20.27 (5.2) [18.2, 22.4]
Biv 17.54 (5.9) [15.48, 19.60]
α 0.2256 (12.4) [0.170, 0.281]
β 0.0065 (7.0) [0.005, 0.007]

Sum of squares 41009
R2 (100 - 0.1) 0.99 / 0.97 / 0.96 / 0.99

Physiological constants Value

Cl 0.0004
Cld 0.0029
V1 0.0265
V2 0.0270

Table 3.3: Pharmacokinetic parameters of 22E9 for the two compartment model i.v.. The
fitting parameters are in macro constant parameterization (Aiv, Biv, α,β). The physio-
logical parameters Cl (clearance), Cld (intercompartmental distribution), V1 (volume of
distribution of the first compartment) and V2 (volume of distribution of the second com-
partment) are calculated a posteriori.
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Figure 3.3: Simultaneous fit of the antibody 22E9 concentration measured in blood for all
available dosing schedules.

3.5 Discussion and outlook

The compartment approach based on linear differential equations is the standard tech-
nique in pharmacokinetic modeling because it allows the identification of parts of the body
with compartments in the model. More precisely, in PK studies mainly two-compartment
models are applied to fit data because the data situation is usually sparse. We remark
that the amount of data presented in Section 3.4 is uncommonly large.

The straightforwardness of analytically solving linear differential equations is of major
importance in pharmacokinetic / pharmacodynamic modeling. Note that in the final
PKPD model the drug concentration c(t) has to be evaluated in a tremendous way.

However, from the modeling point of view there are several legitimate questions. For
example, are the rate constants kij really constant (see e.g. [Jon06]) or do they maybe
depend on outside influences (like temperature, age, weight,...)? In general, mice experi-
ments are preformed under standardized laboratory conditions and the mice are from the
same strain. In [MMN+04] it is shown that different age and strain of mice significantly
affect the levels of drug (in their work cocaine was observed) in brain and blood.

A new approach for pharmacokinetic modeling is based on the idea that the body behaves
like a fractional system, which is from a physiological point of view a reasonable assump-
tion, see [DM09] and [DMM10]. Such models are based on fractional calculus, that means,
the derivative could be of real valued order instead of integers, as in classical calculus.
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Discussion and outlook

Anyway, such models were just recently introduced to the pharmacokinetic community
and as far as we know not applied in a full PKPD model until now.
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Chapter 4

Model Figures

In this chapter we present and deduce different model figures which will be used in our
pharmacokinetic/pharmacodynamic models. We will also discuss the biological back-
ground and interpretation.

In Section 4.1 we present a general inflow/outflow model. Such a model has a zero order
inflow into a state and a first order outflow from that state. An important property of
this model is that, under realistic conditions, every solution runs into a stationary point.
Such a stationary point is of fundamental biological importance and therefore, the models
are frequently applied in PKPD modeling.

In Section 4.2 we consider transit compartment models (TCM). Such models consist of
n states put in series and mimic signal transduction cascades. Roughly spoken, a TCM
describes the pathway of a signal. However, in PKPD modeling TCMs are also just used
to produce any kind of delay or to describe populations. In such applications, the different
states of a TCM could lose their biological identification.

Therefore, we introduce in the next Section 4.3 the concept of lifespan models (LSM). In
this model an individual enters a population and stays a certain time in this population,
called the lifespan. After that lifespan the individual irrevocably has to leave the popu-
lation. Lifespan models consist of exactly one state.

In Section 4.4 we present an important relationship between TCMs and LSMs. The
obtained theoretical result enables the modeler to substitute TCMs (n states) by LSMs
(one state). This result is accepted for publication in the Journal of Pharmacokinetics
and Pharmacodynamcis, see [KS12].

In Section 4.5 a rough classification of models with an explicit delay is presented.

Section 4.6 is independent of the previous ones and deals with drug-effect terms. Such
a term describes the effect of the drug on the target. This target could be the disease
itself (e.g. proliferating cells) or the inhibition of messengers (e.g. cytokines, which have
an indirect effect on the disease). Two classical and one new drug-effect term will be
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The inflow/outflow model

presented. Our new drug-effect term is capable to describe non-monotonic drug effects,
that means, a dosing group with a lower amount of administered drug shows a higher
effect than the higher dosing group.

4.1 The inflow/outflow model

Consider a state x(t) controlled by two processes, an inflow into that state and an outflow
from that state. A reasonable realization is by a zero-order inflow and a first-order out-
flow. We call such a model an inflow/outflow model (IOM). See Figure 4.1 for a schematic
representation.

)(tkin )(tkoutx

Figure 4.1: Schematic representation of an inflow/outflow model.

An important property of an IOM is that under realistic conditions every solution runs
into a steady state or mathematically spoken, the system has a global asymptotically
stable stationary point. Such a steady state behavior is of fundamental importance for
pharmacological modeling.

The IOMs are part of the so-called class of turnover driven models, see [GW06]. Gabriels-
son stated that “turnover driven models are typically based on sound biological principles”
and “the variables and parameters have ideally a physiological meaning and can often be
related to ... physiological data” in [GW06].

Let kin : R≥0 → R≥0 and kout : R≥0 → R≥0 be the inflow and outflow, respectively.
Let these functions be piecewise continuous and bounded. We assume that the limits

lim
t→∞

kin(t) = k∗
in ≥ 0 and lim

t→∞
kout(t) = k∗

out > 0 (4.1)

exist. An inflow/outflow model is of the form

x′(t) = kin(t) − kout(t) · x(t) , x(0) = x0 ≥ 0 (4.2)

with the asymptotically stable stationary point

x∗ = lim
t→∞

x(t) =
k∗

in

k∗
out

.

Because of the existence of the limits (4.1), (4.2) implies

0 = f(x∗) = k∗
in − k∗

out · x∗ =⇒ x∗ =
k∗

in

k∗
out

and with f ′(x∗) = −k∗
out < 0, x∗ is asymptotically stable, see [HK96].
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The transit compartment model

4.1.1 Application of inflow/outflow models - Indirect response

models

In pharmacodynamics, one is often faced with a so-called indirect drug response, that
means, the drug stimulates or inhibits factors which control the response, see [DGJ93].
Further, one assumes that the system is in a so-called baseline condition. For example,
think of messengers in the body or heart rate. The aim is to describe a perturbation of
this baseline by a drug c(t). Moreover, if the perturbation vanishes, it is assumed that
the response runs back into the baseline.

The basic equation of an indirect response model (IDR) is of the form (4.2) with constant
positive inflow and outflow rates. This model reads

x′(t) = kin − kout · x(t) , x(0) = x0 ≥ 0 (4.3)

with the solution

x(t) =
kin

kout

+

(
x0 − kin

kout

)
exp(−kout · t) .

For a baseline condition the initial value is set equal to the steady state

x0 = x∗ =
kin

kout

.

In standard indirect response models, a Michaelis-Menten drug-effect term with Hill co-
efficient (see Section 4.6) is applied. Depending on which rate is stimulated or inhibited,
one obtains four possible models, see originally Dayneka, Jusko and coworkers [DGJ93]
or summarized [GW06] for the response R(t), presented in compact form

R′(t) = kin ·
{(

1 − Imaxc(t)
h

ICh
50 + c(t)h

)
,

(
1 +

Emaxc(t)
h

ECh
50 + c(t)h

)}
(4.4)

− kout ·
{(

1 − Imaxc(t)
h

ICh
50 + c(t)h

)
,

(
1 +

Emaxc(t)
h

ECh
50 + c(t)h

)}
· R(t) , R(0) =

kin

kout

where 0 < Imax ≤ 1. Note that lim
t→∞

c(t) = 0. IDRs (4.4) are one of the most popular

models in PKPD and are extensively studied and applied by PD scientists in the last 20
years. Note that from the mathematical point of view, (4.4) is a special design of our
general inflow/outflow model (4.2).

4.2 The transit compartment model

A widely used model in PKPD is the transit compartment model (TCM)

x′
1(t) = kin(t) − k · x1(t) , x1(0) = x0

1 ≥ 0 (4.5)

x′
2(t) = k · x1(t) − k · x2(t) , x2(0) = x0

2 ≥ 0 (4.6)

...

x′
n(t) = k · xn−1(t) − k · xn(t) , xn(0) = x0

n ≥ 0 (4.7)
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The transit compartment model

where kin : R≥0 → R≥0 is a piecewise continuous and bounded function and k ∈
R>0 denotes the transit rate between the compartments. Roughly spoken, the states
x2(t), ..., xn(t) are delayed versions of x1(t). Note that a TCM actually consists of n in-
flow/outflow models (4.2) put in series.

A schematic representation is presented in Figure 4.2. In Figure 4.3 some solutions of the
model (4.5)-(4.7) are plotted.

The application of (4.5)-(4.7) is versatile in PKPD modeling. TCMs are for example mo-
tivated based on signal transduction processes, see [SJ98], and therefore, mimic biological
signal pathways. For example, in [FHM+02] the maturation of cells for chemotherapy-
induced myelosuppression was described by TCMs. But TCMs are also often used to
just produce delays, see [LB02] (delayed drug course) or [EDM+08b]-[EDM+08a] (delayed
cytokine growth). Hence, the states xi(t) often lose their pharmacological interpretation
and the TCM concept is downgraded to a help technique. Historically, Sheiner was the
first in 1979, see [SSV+79], who suggested to apply a TCM with n = 1 to describe a delay
between pharmacokinetics and effect.

TCMs are also applied to describe populations, see [SMC+04] or Chapter 6. Because
when looking at a TCM more precisely, one could assign a mean residence/transit time
of 1

k
for an individual to stay in the i-th compartment, i ∈ 1, ..., n, see e.g. [SJ98]. In this

sense, a TCM could be reinterpreted as a model describing an age structured population
and xi(t) describes the number of individuals with age ai, where ai ∈ ( i−1

k
, i

k
]. Hence,

spoken in population, the x1(t), ..., xn(t) describe the age distribution of a total population

yn(t) = x1(t) + · · · + xn(t) .

Therefore, the secondary parameter

T =
n

k

describes the mean transit/residence time needed for an object created by kin to pass
through all states xi(t) with i = 1, ..., n.

However, in most cases it is obvious that the choice of the number of compartments
n is somehow arbitrary. In application, n is often chosen in such a way that the final
PKPD model fits the data best. For example, Savic and Karlsson [SJKK07] presented a
technique to determine the optimal number of compartments based on fitting results for
delayed PK p.o. data.

We will show in Section 4.4 an important property of the TCM when the number of
compartments tends to infinity. For that purpose we are interested in the analytical
solution of system (4.5)-(4.7).
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Figure 4.2: Schematic representation of the transit compartment model (4.5)- (4.7).
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Figure 4.3: Solutions of the transit compartment model (4.5)- (4.7) for n = 5 with the
parameter kin ≡ 1, k = 0.2 and x0
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5 = 0.
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Remark 4.2.1
The analytical solution of the transit compartment model (4.5)-(4.7) reads

x(t) = X(t) · x0 +

t∫

0

X(t − s) · kin(s) · e1 ds ∈ R
n (4.8)

where e1 = (1, 0, ..., 0)T ∈ R
n and

X(t) =
1

k
·




g1
k(t)

g2
k(t) g1

k(t)
...

. . .

gn
k (t) . . . g2

k(t) g1
k(t)


 ∈ R

n,n

with the gamma probability density functions

gj
k(t) =

kjtj−1

(j − 1)!
exp(−kt) , t ≥ 0 , j = 1, ..., n . (4.9)

Proof: Consider system (4.5)-(4.7) in matrix notation

x′(t) = A · x(t) + kin(t) · e1 , x(0) = x0

with

A =




−k 0
k −k

. . . . . .

0 k −k


 ∈ R

n,n .

By the variation of constants formula the solution reads

x(t) = X(t) · x0 +

t∫

0

X(t − s) · kin(s) · e1 ds

with X(t) = exp(tA), t ≥ 0. Now we calculate the explicit representation of the funda-
mental matrix X(t). Let

N =




0 0
1 0

. . . . . .

0 1 0


 ∈ R

n,n .

The matrix N is nilpotent. Further N has the property that for each multiplication with
itself, the diagonal with the ones slides to the left lower corner. We split the compartment
matrix A as follows

A = −k · (I − N)
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where I ∈ R
n,n is the identity matrix. Then we can compute

X(t) = exp(tA) = exp(−tk(I − N)) = exp(−kt) exp(ktN) =
1

k
g1

k(t) exp(ktN) .

Because N is nilpotent the matrix exponential exp(ktN) reads

exp(ktN) =
∞∑

j=0

(kt)j

j!
N j =

n−1∑

j=0

(kt)j

j!
N j = I + ktN +

(kt)2

2!
N2 + · · · + (kt)n−1

(n − 1)!
Nn−1 .

With the additional property of the powers of N we obtain

exp(ktN) =




1 0 0 . . . 0 0
kt 1 0 0 0

(kt)2

2!
kt 1 0 0

...
. . .

...
(kt)n−1

(n−1)!
(kt)n−2

(n−2)!
. . . kt 1




and finally

X(t) =
1

k
g1

k(t) exp(ktN) =
1

k




g1
k(t) 0

g2
k(t) g1

k(t)
...

. . .

gn
k (t) . . . g2

k(t) g1
k(t)


 .

¤

Remark 4.2.2
For lim

t→∞
kin(t) = k∗

in the asymptotically stable stationary points are

x∗
i =

k∗
in

k
for i = 1, ..., n .

Finally, again by setting x0
i = x∗

i for i = 1, ..., n a baseline condition is obtained.

4.3 Lifespan models

Lifespan models (LSM) were introduced by Krzyzanski and Jusko in 1999 [KRJ99] to
PKPD modeling. They applied this approach to cell populations in the context of indi-
rect response models.

In this section we consider the lifespan approach from a more general point of view as e.g.
in [KRJ99]. Let y(t) be a state controlled by production (birth) and loss (death). The
general form of such a model is

y′(t) = kin(t) − kout(t) , y(0) = y0 (4.10)

where kin and kout are piecewise continuous and bounded functions.

Now we assume that every individual has a certain lifespan when it enters the state.
After this lifespan the individual irrevocably vanishes from the state. This will lead to
special forms of kout(t) in (4.10).
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4.3.1 Lifespan models with constant lifespan

First, we consider the case that every object in the state y has the same lifespan T > 0.
Then the outflow from state y at time t is equal to the inflow at time t−T and we obtain
the relation

kout(t) = kin(t − T ) for t ≥ 0 .

Hence, the LSM for constant lifespan reads

y′(t) = kin(t) − kin(t − T ) , y(0) = y0 . (4.11)

In application one has seldom the freedom of choosing the initial value y(0) = y0 arbi-
trarily. For example, when thinking in populations the initial value y0 has to be set in
such a way that it describes the amount of individuals already born and also died in the
interval [−T, 0].

In case of constant lifespan T no individual has died in the interval [−T, 0] and therefore,
we immediately obtain

y0 =

0∫

−T

kin(s) ds . (4.12)

The solution of (4.11)-(4.12) reads

y(t) =

t∫

t−T

kin(s) ds for t ≥ 0

which directly follows by differentiation.

An important case in application is a constant production in the past

kin(s) = k∗
in for s ≤ 0 .

Then the initial value (4.12) is
y0 = T · k∗

in .

However, it is immediately clear that the assumption of constant lifespan is idealized and
in reality not true. Nevertheless, we will focus on this abstraction because in our experi-
ments we do not have enough data to apply a non-constant lifespan approach. In Chapter
6 and 7 we apply a LSM with constant lifespan of the form (4.11).

Anyhow, we will also investigate LSMs with a distributed lifespan in the next section.

4.3.2 Lifespan models with distributed lifespan

The assumption that every individual in the population has the same lifespan is idealized
and not really realistic. Hence, we also consider the case that individuals born at time t
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will vanish around time t + T . For that purpose we introduce a distributed lifespan for
individuals.

Let X be a random variable distributed based on a probability density function (PDF)
l : R → R≥0 with l(s) = 0 for s < 0 and with expectation T = E[X]. The outflow term
then reads

kout(t) =

∞∫

0

kin(t − τ)l(τ) dτ =

∞∫

−∞

kin(t − τ)l(τ) dτ = (kin ∗ l)(t) (4.13)

where ”∗” denotes the convolution. In delay differential equation theory the second term
in (4.13) is generally called a distributed delay, see [Smi10]. In our terminology we call the
term a distributed lifespan, see e.g. [KWJ06] for derivation. The LSM with distributed
lifespan reads

y′(t) = kin(t) − (kin ∗ l) (t) , y(0) = y0 . (4.14)

Again when thinking in populations, the initial value y0 has to be chosen in such a way
that it describes the amount of individuals already born and died. We calculate the start
amount y0 based on a PDF l(τ).

Remark 4.3.1
The start amount for (4.14) reads

y0 =

∞∫

0

0∫

−τ

kin(s) ds l(τ) dτ . (4.15)

Proof: To estimate the amount of the start population y0, we define

k̃in(t) :=

{
kin(t) for t ≤ 0

0 for t > 0
. (4.16)

We claim

lim
t→∞

y(t) = 0 (4.17)

in order to calculate the start population based on (4.16). Consider (4.14) substituted
with (4.16)

y′(t) = k̃in(t) −
∞∫

0

k̃in(t − τ)l(τ) dτ . (4.18)

The solution of (4.18) reads

y(t) = y0 +

t∫

0

k̃in(s) ds −
t∫

0

∞∫

0

k̃in(s − τ)l(τ) dτ ds .
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Because of the definition in (4.16) we have
t∫

0

k̃in(s) ds = 0 and therefore

y(t) = y0 −
t∫

0

∞∫

0

k̃in(s − τ)l(τ) dτ ds .

Changing the integration order gives

y(t) = y0 −
∞∫

0

t∫

0

k̃in(s − τ)l(τ) ds dτ = y0 −
∞∫

0

t∫

0

k̃in(s − τ) ds l(τ) dτ.

Because of the definition in (4.16) we obtain for the upper limit of the inner integral

y(t) = y0 −
∞∫

0

τ∫

0

k̃in(s − τ) ds l(τ) dτ

and further

y(t) = y0 −
∞∫

0

τ∫

0

kin(s − τ) ds l(τ) dτ.

With the claim (4.17) we obtain for the limit

lim
t→∞

y(t) = lim
t→∞


y0 −

∞∫

0

τ∫

0

kin(s − τ) ds l(τ) dτ


 = 0

and therefore

y0 =

∞∫

0

0∫

−τ

kin(ξ) dξ l(τ) dτ .

¤

The solution of (4.14)-(4.15) reads

y(t) =

∞∫

0

t∫

t−τ

kin(s) ds l(τ) dτ

because

d

dt
y(t) =

∞∫

0


 d

dt

t∫

t−τ

kin(s) ds


 l(τ) dτ =

∞∫

0

(kin(t) − kin(t − τ)) l(τ) dτ

=

∞∫

0

kin(t)l(τ) dτ −
∞∫

0

kin(t − τ)l(τ) dτ = kin(t) − (kin ∗ l) (t) .
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For constant past, kin(s) = k∗
in for s ≤ 0, we obtain with (4.15)

y0 =

∞∫

0

0∫

−τ

k∗
in ds l(τ) dτ = k∗

in

∞∫

0

τ l(τ) dτ = k∗
inT . (4.19)

The result (4.19) for constant production in the past was also derived and published in
[KWJ06].

Finally, we remark that in the overview article from Krzyzanski and Perez-Ruixo [KPR12]
from 2012, LSMs with constant past in the context of indirect response are summarized.

4.4 General relationship between transit compartments

and lifespan models

In this section we present an important relationship between transit compartments and
lifespan models. Roughly spoken, we show that if the number of compartments tends to
infinity and the parameter

T =
n

k
is fixed, then in the limit the sum of all compartments is a lifespan model with constant
lifespan T > 0.

An initial result was firstly presented by Krzyzanski in 2011, see [Krz11]. He investi-
gated equal initial values for the TCM and constant past for the LSM.

Inspired by that work, we generalized the result to arbitrary initial values and non-
constant past. The result of this section was established together with Prof. Dr. J.
Schropp and is accepted for publication in the Journal of Pharmacokinetics and Pharma-
codynamics, see [KS12].

For that purpose we introduce properties (see e.g. [LC98]) of the gamma probability
function (PDF)

gj
k(t) =

kjtj−1

(j − 1)!
exp(−kt) , t ≥ 0

for all j ∈ N and k > 0.

• Normalized integral:
∞∫

0

gj
k(s) ds = 1

• Expected value:
∞∫

0

s · gj
k(s) ds =

j

k
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• Variance:
∞∫

0

s2 · gj
k(s) ds −




∞∫

0

s · gj
k(s) ds




2

=
j

k2

• Summation:
j∑

l=1

1

k
gl

k(t) = 1 −
t∫

0

gj
k(s) ds

Now let n = j and k = n
T

for a given T > 0. Then we obtain for the expected value

lim
n→∞

n

k
= lim

n→∞
T = T

and for the variance

lim
n→∞

n

k2
= lim

n→∞

T 2

n
= 0 .

Hence, the gamma PDF gn
n
T
(t) acts for n → ∞ in the limit as the Dirac delta function

(DDF) on integrable functions h : R → R via

a∫

−∞

h(s) · δ(s − T ) ds =

{
h(T ) for a > T

0 for a < T
, (4.20)

a ∈ R arbitrary.

Theorem 4.4.1
Consider the transit compartment model

x′
1(t) = kin(t) − k · x1(t) , x1(0) = x0

1 ≥ 0 (4.21)

x′
2(t) = k · x1(t) − k · x2(t) , x2(0) = x0

2 ≥ 0 (4.22)

...

x′
n(t) = k · xn−1(t) − k · xn(t) , xn(0) = x0

n ≥ 0 (4.23)

where kin : R → R≥0 is a piecewise continuous and bounded function with finite many
discontinuity points and k ∈ R>0 denotes the transit rate. Let f : [0, 1] → R≥0 be an
arbitrary piecewise continuous function (called initial density function) with f(0) = kin(0).
Assume that the initial values of (4.21)-(4.23) satisfy

xi(0) =
1

k
f

(
i

n

)
for i = 1, ..., n . (4.24)

Let
T =

n

k
> 0

be an arbitrary but fixed value where n and k are the TCM related parameter of (4.21)-
(4.23). Further consider the total population based on (4.21)-(4.23)

yn(t) = x1(t) + · · · + xn(t) (4.25)

40



General relationship between transit compartments and lifespan models

where
y′

n(t) = x′
1(t) + · · · + x′

n(t) = kin(t) − k · xn(t) .

Then one obtains the limiting behavior

lim
n→∞

k · xn(t) = kin(t − T ) for t ≥ 0 (4.26)

and, as a consequence, the limit

y(t) = lim
n→∞

yn(t) for t ≥ 0 (4.27)

fulfills the lifespan model

y′(t) = kin(t) − lim
n→∞

k · xn(t)

= kin(t) − kin(t − T ) , t ≥ 0 , y(0) = y0 (4.28)

with a constant lifespan T , provided the input function kin satisfies

kin(t) = f

(
− t

T

)
for − T ≤ t ≤ 0 . (4.29)

The initial value of (4.28) reads

y0 = lim
n→∞

n∑

i=1

xi(0) = T

1∫

0

f(s)ds . (4.30)

Proof: The TCM (4.21)-(4.23) with initial values (4.24) reads

x′(t) =




−k 0
k −k

. . . . . .

0 k −k




︸ ︷︷ ︸
=:A

·x(t) + kin(t) · e1 , x(0) =
1

k
· x̂0 (4.31)

with

x̂0
i = f

(
i

n

)
for i = 1, ..., n . (4.32)

With Remark 4.2.1 we obtain

x(t) = X(t) · 1

k
· x̂0 +

t∫

0

X(t − s) · kin(s) · e1 ds ∈ R
n (4.33)

where

X(t) =
1

k
·




g1
k(t)

g2
k(t) g1

k(t)
...

. . .

gn
k (t) . . . g2

k(t) g1
k(t)


 ∈ R

n,n . (4.34)
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The main idea of the proof is to rewrite k · xn(t) as sum of two functions v(t) and w(t)
which are itself solutions of linear differential equations.

The first differential equation with initial values depending on f reads

v′(t) = A · v(t) (4.35)

with

v(0) = v0 = x̂0 ∈ R
n where x̂0

i = f

(
i

n

)
(4.36)

for i = 1, ..., n. The solution is

v(t) = X(t) · x̂0 . (4.37)

The second system includes the input function kin and reads

w′(t) = A · w(t) + k · kin(t) · e1 , w(0) = 0 ∈ R
n (4.38)

with the solution

w(t) =

t∫

0

k · kin(s) · X(t − s) · e1 ds . (4.39)

Obviously, by comparing the solution representation (4.33) of the TCM with (4.37) and
(4.39) we obtain

k · x(t) = v(t) + w(t) for t ≥ 0 . (4.40)

In order to investigate the limiting behavior of (4.40) for n → ∞, we analyze the limiting
behavior of v(t) and w(t) for n → ∞.

We divide the proof in several parts:

Part 1: First of all we calculate the n-th component of w(t). (4.39) can be written as

w(t) =

t∫

0

k · kin(s) · X(t − s) · e1 ds =

t∫

0

k · kin(s) · 1

k
·




g1
k(t − s)

g2
k(t − s)

...
gn

k (t − s)


 ds

=

t∫

0

kin(s) ·




g1
k(t − s)

g2
k(t − s)

...
gn

k (t − s)


 ds =

t∫

0

kin(t − s) ·




g1
k(s)

g2
k(s)
...

gn
k (s)


 ds .

42



General relationship between transit compartments and lifespan models

Hence, the n-th component of w(t) with k = n
T

is

wn(t) =

t∫

0

kin(t − s) · gn
n
T
(s) ds . (4.41)

Part 2: A direct investigation of (4.37) is difficult because of the arbitrary initial values
(4.36). Therefore, the idea is to prove the result indirect by considering a help differential
equation with constant initial values. The system we have in mind is

u′(t) = A · u(t) + k · k̃in(t) · e1 , u(−T ) = 0 (4.42)

with

k̃in(t) =

{
f

(
− t

T

)
for − T ≤ t ≤ 0

0 for t > 0
. (4.43)

Hence, in (4.42)-(4.43) the past [−T, 0] is set in relationship with f . Note that according
to (4.29) we have

k̃in(ξ) = kin(ξ) for ξ ∈ [−T, 0] . (4.44)

The solution of (4.42) reads

u(t) =

t∫

−T

X(t − s) · k · k̃in(s) · e1 ds

and according to (4.34) the j-th component is

uj(t) =

t∫

−T

gj
k(t − s) · k̃in(s) ds =

t+T∫

0

gj
k(s) · k̃in(t − s) ds (4.45)

for j = 1, ..., n. Note that

||X(t)||∞ =
n∑

j=1

1

k
gj

k(t) = 1 −
t∫

0

gn
k (s) ds ≤ 1

for t ≥ 0 uniformly for n ∈ N. We can compute for t ≥ 0

|vn(t) − un(t)| = |eT
nX(t)v(0) − eT

nX(t)u(0)|
≤ ||eT

n ||∞︸ ︷︷ ︸
=1

· ||X(t)||∞︸ ︷︷ ︸
≤1

·||v(0) − u(0)||∞

≤ ||v(0) − u(0)||∞ (4.46)
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for any n ∈ N where en = (0, 0, ..., 0, 1)T ∈ R
n. The next step is to prove

lim
n→∞

un(t) = lim
n→∞

vn(t) for t ≥ 0 . (4.47)

According to (4.46) it is sufficient to show the convergence of the initial values v(0), u(0) ∈
R

n towards the same limit as n → ∞.

To that purpose we use a series of natural numbers (jn)n∈N describing the index of the
compartments. Further let z ∈ (0, 1] be fixed but arbitrary. This is necessary to show that
the limit of the initial values is equal, compare (4.36) where 0 < i/n ≤ 1 for i = 1, ..., n.
We choose (jn)n∈N such that lim

n→∞

jn

n
= z. Then with k = n

T

ujn
(t) =

t+T∫

0

gjn
n
T

(s)k̃in(t − s) ds .

Because the expected value of a random variable Y (n) with PDF gn
k is E[Y (n)] = n

k
, we

immediately obtain for the random variable Z(n) with the PDF gjn
n
T

that

lim
n→∞

E[Z(n)] = lim
n→∞

jnT

n
= zT

and

lim
n→∞

Var[Z(n)] = lim
n→∞

jnT
2

n2
= 0

hold. Thus we obtain

lim
n→∞

ujn
(t) = lim

n→∞

t+T∫

0

gjn
n
T

(s)k̃in(t − s) ds =

t+T∫

0

k̃in(t − s) · δ(s − zT ) ds

=

{
k̃in(t − zT ) for t + T > zT

0 for t + T < zT
. (4.48)

In the case t = 0 with (4.29),(4.44) this leads to

lim
n→∞

ujn
(0) = k̃in(−zT ) = f(z) for 0 < z ≤ 1 .

On the other hand we have

lim
n→∞

vjn
(0) = lim

n→∞
f

(
jn

n

)
= f(z) for 0 < z ≤ 1

and (4.47) is shown.
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Part 3: We are now in the situation to show our main result. Using (4.41), (4.45) with
j = n and (4.47) we can compute

lim
n→∞

k · xn(t) = lim
n→∞

(wn(t) + vn(t)) = lim
n→∞

(wn(t) + un(t))

= lim
n→∞

( t∫

0

kin(t − s)gn
n
T
(s) ds

+

t∫

0

k̃in(t − s)︸ ︷︷ ︸
=0

gn
n
T
(s) ds +

t+T∫

t

k̃in(t − s)︸ ︷︷ ︸
=kin(t−s)

gn
n
T
(s) ds

)
.

Note that the relations for k̃in are valid because of (4.43) and (4.44). Hence,

lim
n→∞

k · xn(t) = lim
n→∞

( t∫

0

kin(t − s)gn
n
T
(s) ds +

t+T∫

t

kin(t − s)gn
n
T
(s) ds

)

= lim
n→∞

t+T∫

0

kin(t − s)gn
n
T
(s) ds

=

t+T∫

0

kin(t − s)δ(s − T ) ds

= kin(t − T ) for t > 0 (4.49)

because of (4.20). For t = 0 we obtain with (4.24) and (4.29) directly

lim
n→∞

k · xn(0) = lim
n→∞

k · 1

k
· f

(n

n

)
= f(1) = kin(−T ) . (4.50)

Combining (4.49) and (4.50) yields

lim
t→∞

k · xn(t) = kin(t − T ) for t ≥ 0 .

Part 4: The solution of (4.28) reads

y(t) =

t∫

t−T

kin(s)ds

and

y(0) = lim
n→∞

n∑

i=1

xi(0) = lim
n→∞

n∑

i=1

1

k
· f

(
i

n

)
= T · lim

n→∞

n∑

i=1

1

n
· f

(
i

n

)
= T ·

1∫

0

f(s) ds .

¤
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It is remarked that the idea of splitting into two linear differential equations was con-
tributed by Prof. Dr. J. Schropp.

In Chapter 6 the result will be applied to rewrite a PKPD model consisting of transit
compartments into a model with a lifespan equation. In Chapter 7 we go vice versa and
rewrite a model originally developed with a lifespan equation by transit compartments.

4.5 Classification of models with lifespan

In this section we categorize typical PKPD models based on a lifespan approach.

Let x1 be a precursor or driver compartment which provokes a state x2. All models
in this section are coupled from x1 towards x2 in such a way that the outflow from x1 is
equal or delayed to the inflow of x2. If also a back coupling from x2 to x1 exists, we call
this a feedback. We describe by g a growth mechanism. In the following classification we
set the rates time-independent.

Model I : Lifespan model with precursor and no feedback

Consider the model

x′
1(t) = g(t, x1(t)) − k1 · x1(t) , x1(s) = x0

1(s) for − T ≤ s ≤ 0 (4.51)

x′
2(t) = k1 · x1(t) − k1 · x1(t − T ) , x2(0) = x0

2 . (4.52)

Note that the solution of (4.52) could be computed a posteriori by pure integration

x2(t) = k1

t∫

t−T

x1(s) ds − k1

0∫

−T

x0
1(s) ds + x0

2 .

A structural equal model like (4.51)-(4.52) was developed and applied by Perez-Ruixo et
al in 2005 [PRKC+05] for cells in the context of indirect response (stimulation / inhibition
of rate constants).

Model II : Delayed driver with no feedback

The development of x2 is delayed due to the driver x1. We obtain

x′
1(t) = g(t, x1(t)) − k1 · x1(t) , x1(s) = x0

1(s) for − T ≤ s ≤ 0 (4.53)

x′
2(t) = k1 · x1(t − T ) − k2 · x2(t) , x2(0) = x0

2 . (4.54)

From a mechanistic point of view the delayed inflow into x2 could be explained by a
lifespan equation with inflow kin(t) = k1x1(t), more precisely, if one adds

y′(t) = k1 · x1(t) − k1 · x1(t − T ) , y(0) = y0 (4.55)
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to (4.53)-(4.54). In Chapter 7 we present a structural similar model, build based on phar-
macological assumptions for arthritis development.

Model III : Lifespan model with precursor and feedback

The model (4.51)-(4.52) reads with a feedback

x′
1(t) = g(t, x1(t), x2(t)) − k1 · x1(t) , x1(s) = x0

1(s) for − T ≤ s ≤ 0 (4.56)

x′
2(t) = k1 · x1(t) − k1 · x1(t − T ) , x2(0) = x0

2 . (4.57)

We will see in Chapter 6 the derivation of structure (4.56)-(4.57) based on a typical tumor
growth PKPD model.

Model IV : Delayed driver with feedback

The model (4.53)-(4.54) with feedback reads

x′
1(t) = g(t, x1(t), x2(t)) − k1 · x1(t) , x1(s) = x0

1(s) for − T ≤ s ≤ 0 (4.58)

x′
2(t) = k1 · x1(t − T ) − k2 · x2(t) , x2(0) = x0

2 . (4.59)

A schematic representation of models I - IV is presented in Figure 4.4. The classifi-
cation between feedback and no feedback is of importance when rewriting the equations
by the method of steps, see [Dri77].

No feedback: Reformulation of model I and II as ordinary differential equation

Model I (4.51)-(4.52) and II (4.53)-(4.54) with no feedback or more general, models with
no appearance of the delayed state in the corresponding equations are covered by the
structure

x′
1(t) = f1(t, x1(t)) , x1(s) = x0

1(s) for − T ≤ s ≤ 0 (4.60)

x′
2(t) = f2(t, x1(t), x1(t − T ), x2(t)) , x2(0) = x0

2 . (4.61)

For (4.60)-(4.61) the method of steps reduces to exactly two steps.

Step 1: 0 ≤ t ≤ T
We include the explicitly known initial function x0

1 for the delayed state and obtain

x′
1(t) = f1(t, x1(t)) , x1(0) = x0

1(0) (4.62)

x′
2(t) = f2(t, x1(t), x

0
1(t − T ), x2(t)) , x2(0) = x0

2 . (4.63)

Step 2: T ≤ t
We add a further ordinary differential equation for x3 which describes the state of x1
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Figure 4.4: Schematic representation of the models I - IV. The interval [−T, 0] in com-
partment x1 denotes the existence of a past. The parameter T denotes where the delay
takes place.

before t−T time units, namely x3(t) = x1(t−T ) and denote by (xT
1 , xT

2 ) the value at the
time point T . Then the system reads

x′
1(t) = f1(t, x1(t)) , x1(T ) = xT

1 (4.64)

x′
2(t) = f2(t, x1(t), x3(t), x2(t)) , x2(T ) = xT

2 (4.65)

x′
3(t) = f1(t − T, x3(t)) , x3(T ) = x0

1(0) . (4.66)

Feedback: Reformulation of model III and IV as ordinary differential equation

Model III (4.56)-(4.57) and IV (4.58)-(4.59) with feedback are covered by the structure

x′
1(t) = f1(t, x1(t), x2(t)) , x1(s) = x0

1(s) for − T ≤ s ≤ 0 (4.67)

x′
2(t) = f2(t, x1(t), x1(t − T ), x2(t)) , x2(0) = x0

2 . (4.68)

Due to the feedback, the method of steps does not break off after two steps.

Consider the first step 0 ≤ t ≤ T , then we directly obtain

x′
1(t) = f1(t, x1(t), x2(t)) , x1(0) = x0

1(0) (4.69)

x′
2(t) = f2(t, x1(t), x

0
1(t − T ), x2(t)) , x2(0) = x0

2 . (4.70)
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In the second step we again use a delayed version of x1 based on additional ordinary
differential equations and obtain

x′
1(t) = f1(t, x1(t), x2(t)) , x1(T ) = xT

1 (4.71)

x′
2(t) = f2(t, x1(t), x3(t), x2(t)) , x2(T ) = xT

2 (4.72)

x′
3(t) = f1(t − T, x3(t), x4(t)) , x3(T ) = x0

1(0) (4.73)

x′
4(t) = f2(t − T, x4(t), x

0
1(t − 2T ), x4(t)) , x4(T ) = x0

2 . (4.74)

Because in (4.73) the initial function is used, the interval for the second step is T ≤ t ≤ 2T .
Hence, the method of steps does not break off and the number of steps depends on the
ratio between the delay parameter and the length of the integration interval.

4.6 Modeling of the drug effect

We introduced models to describe the pharmacokinetics c(t) of a drug in Chapter 3. The
PK models have the property

lim
t→∞

c(t) = 0 .

In this section we focus on drug-effect models describing the pharmacological effect of a
drug at the target. Roughly spoken, such targets could be tumor cells or more indirectly,
messengers in the body whose perturbation leads to an effect on the disease.

We denote a drug-effect term by

e(σ, c(t)) (4.75)

where we call σ the drug-related parameter. The only assumption on (4.75) is

lim
c→0

e(σ, c) = 0

that means, if the drug concentration vanish, then the pharmacological effect will also
vanish.

The simplest approach for a drug-effect term is a linear model

e1(kpot, c(t)) = kpot · c(t) (4.76)

where kpot describes the drug potency. Such a parameter could be used to rank different
compounds (drug candidates) among each other in preclinical screening. The approach
(4.76) is also useful if only few dosing groups are available for a simultaneous fit. In case
of more dosing groups this model is only locally true around a certain amount of dose
because the effect of a drug is in the majority of cases only linear in a small range of
different doses. We will present the application of (4.76) in Chapter 6.

The classical drug-receptor binding theory based on the Michaelis-Menten theory, see
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[Mur89] or [Boh06], states that the molecules of a drug bind to the appropriate target re-
ceptor and that the amount of binding possibilities at the receptor is limited. Therefore,
the effect of a drug will saturate and more drug will not lead to more effect. Follow-
ing the Michaelis-Menten theory, see e.g. [MI06], results in a drug-effect term for the
pharmacological effect of the form

e2(σ, c(t)) =
Emax · c(t)h

ECh
50 + c(t)h

(4.77)

with σ = (Emax, EC50, h). Emax is the maximal effect, EC50 is the concentration which
is needed to produce the half-maximal effect and h is the Hill coefficient. In Figure 4.5
a plot of (4.77) is presented. The model (4.77) is one of the basic principles in PKPD
modeling and is called the non-linear approach.

However, sometimes the drug effect relationship is highly non-linear and (4.77) will fail
to describe the data. Therefore, we develop a new approach for drug-effect modeling
covering the following situations:

• The drug-effect term could describe highly non-linear data.

• The drug-effect term is able to describe non-monotonic dose effect behavior, that
means, if the effect for a lower dose is higher than for a higher dose. We are aware
that this is a very special and seldom situation. However, we were faced with such
a situation, see Chapter 7, experiment A.

The key to this new effect term is the observation that the potency parameter kpot in the
linear approach (4.76) obtained by fits from the control group together with one dosing
group could depend on the drug level c(t). In the experiments from Chapter 7 the potency
kpot decreases exponentially with an increasing level of c(t). Therefore, we amend (4.76)
by a term decreasing with c and obtain

kpot(c) = σ3 + σ1 exp(−σ2c) . (4.78)

Note that (4.78) satisfies an inflow/outflow model (see Section 4.1) and therefore, is based
on pharmacological first principles. By multiplying with c(t) we obtain the drug effect
term

e3(σ, c(t)) = kpot(c(t))c(t) = (σ1 exp(−σ2c(t)) + σ3) c(t) (4.79)

with σ1, σ2, σ3 > 0. The parameter σ3 describes the base potency of the drug and σ1, σ2

are potency decreasing parameters. See Figure 4.5 for a plot of (4.79).

4.7 Discussion and outlook

In this chapter we presented and summarized important model figures which we will apply
in Chapters 6 and 7. In Section 4.1 we introduced the typical inflow / outflow model and
in Section 4.2 the transit compartment approach. We showed in Section 4.4 an important
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Figure 4.5: In the left panel a plot of (4.77) with the parameters Emax = 1, EC50 = 10
and with h = 0.5 (dash dotted line),1 (solid line) and 3 (dashed line) is presented. In the
right panel a plot of (4.79) with the parameter σ1 = 0.328, σ2 = 0.328 and σ3 = 0.025 is
presented.

general relationship between transit compartments and lifespan models (Section 4.3) with
constant delay. This result is also published in [KS12] coauthored by Prof. Dr. J. Schropp.
Whether a result similar to Theorem 4.4.1 also holds in the case of distributed lifespan is
an interesting open problem. In Section 4.5 we categorized typical models with a lifespan.
Finally, in Section 4.6 we presented drug-effect terms.
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Chapter 5

Point and Interval Estimation

This chapter deals with statistical properties of point estimators for model parameters.
In application, one is not only interested in parameter estimates but also in the question,
how reliable is the estimate obtained from a finite sample size?

Therefore, we calculate statistical characteristics for estimates, like confidence intervals
and coefficient of variations. A confidence interval could be understood as follows. The
confidence interval is a region around an estimate that indicates with a given probability
the location of the true value for the parameter. The coefficient of variation is a normal-
ized measure of dispersion.

For that purpose we introduce the weighted least squares sum and formulate statisti-
cal assumptions on the errors, see Sections 5.1, 5.2 and 5.3. In Section 5.4 we prove the
consistency of the weighted least squares estimator. Based on this result, the asymptot-
ically normal distribution of the weighted least squares estimator is obtained in Section
5.5. Equipped with this result we are able to construct the confidence interval and to
calculate the coefficient of variation for parameter estimates in Section 5.6.

The presented proofs apply ideas from the results for ordinary least squares stated in
[SW89], [DM93] and [Ame01]. Finally, we adopted the typical notation from statistics /
econometrics in this chapter.
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5.1 The weighted least squares sum

Our pharmacokinetic and pharmacodynamic experiments consist of measurements from
individual subjects (animals) at different time points ti. Usually, ten animals are used
for each dosing group and the number of groups varies from two to four (placebo group
and different drug schedules). In this work we average the measurements in every dosing
group at each time point ti denoted by yi.

Let ti ∈ R≥0 be fixed time points with ti ∈ [0, tend] and yi the corresponding averaged
measurements for i = 1, ..., n. Let x : R≥0 × R

p
>0 → R≥0 be a non-linear model with

parameter θ ∈ R
p
>0. In our pharmacokinetics / pharmacodynamics applications the ana-

lytical representation of the model x(t, θ) is mostly not known because the model is based
on differential equations.

The non-linear regression model reads (see [SW89])

yi = x(ti, θ
∗) + εi (5.1)

where εi ∈ R, i = 1, ..., n are called errors and describe all kind of uncertainty. The
unknown true parameter is denoted by θ∗.

The weighted least squares sum Sn : R
p
>0 → R≥0 reads

Sn(θ) =
n∑

i=1

wi (yi − x(ti, θ))
2 (5.2)

with bounded weights

(A1) 0 < wi ≤ ω for i = 1, ..., n for some ω ∈ R>0.

The least squares estimator is defined as follows, compare with [Ame01].

Definition 5.1.1
Let Θ ⊂ R

p be compact including θ∗. The map

θ̂n := θ̂(y1, y2, ..., yn) : R
n → Θ

is called the weighted least squares (WLS) estimator of the model parameter θ, if it is the
root of the normal equations

∂Sn

∂θ
= 0 .

Note that this definition is in a local sense. But due to our construction of PKPD models
based on pharmacological principles, only one set of parameters exists in a realistic range.

The following remark presents a standard technique in statistics, see e.g. [DM93].
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Remark 5.1.2
In general the limit of Sn(θ) in (5.2) is infinity for n → ∞. Hence, it is a common
approach to investigate the averaged sum of squares

1

n
Sn(θ) =

1

n

n∑

i=1

wi (yi − x(ti, θ))
2 . (5.3)

5.2 Statistical assumptions about the errors

We present three important assumptions about the error random variables εi for i =
1, ..., n:

(A2) The errors εi are independent for i = 1, ..., n.

(A3) The expected value of the error εi is E[εi] = 0 for i = 1, ..., n.

(A4) The variance of the error εi is 0 < Var[εi] = σ2
i < ∞ for i = 1, ..., n.

(A2) is a classical assumption and is necessary to apply a central limit theorem. However,
(A2) is questionable in our applications because our data primarily describes measured
disease development. Hence, it is obvious that the erorrs are not independent. More
generally spoken, Seber stated in [SW89] that serially correlated errors usually arise in
the fitting of growth curves. But the amount of data measured in time is also often sparse
and therefore, the application of more advanced statistical techniques to overcome the
independently assumption is not possible.

(A3) states that the non-linear model for mean response is correctly specified, see [DM93]
or [DG95].

(A4) is a generalization of the classical Gauss-Markov framework (see e.g. [SS90]) where
it is assumed that the variances are all equal. However, in applications Var[εi] = σ2 for
i = 1, ..., n is often violated. Also in our simultaneous fits different variances could arise,
see for example the pharmacokinetic data for different doses in Section 3.4.

Finally, note that we do not assume a distribution for εi.

5.3 Choice of weights

The weights could be arbitrarily chosen in our approach. We present three typical situa-
tions for setting weights in practice.

Situation 1: If there is evidence that some measurements are less reliable than others,
then with the present approach the user is able to set weights a priori.

Situation 2: In a simultaneous fit, several levels of readouts are fitted. For example,
for different pharmacokinetic dosing groups (see Section 3.4) every measurement should
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contribute with the same importance to the sum of squares. Hence, one approach is that
the weights correspond to the inverse of the administered dose for each dosing group.

Situation 3: A general approach in statistics is to set the weights in dependency of the
variance σ2

i in order to construct a constant variance and therefore, to deal with het-
eroscedasticity, see e.g. [SS90]. For that purpose let

Var[εi] = σ2
i = c2

i σ
2 with ci 6= 0 for i = 1, ..., n .

Then constant variance is achieved by dividing the non-linear regression model (5.1) with
ci

yi

ci

=
x(ti, θ

∗)

ci

+
εi

ci

.

One obtains the sum of squares

n∑

i=1

(
εi

ci

)2

=
n∑

i=1

1

c2
i

(yi − x(ti, θ))
2 =

n∑

i=1

wi(yi − x(ti, θ))
2

with the weights

wi =
1

c2
i

.

5.4 Consistent weighted least squares estimator

Roughly spoken, a consistent estimator θ̂n converges towards the true value θ∗, if the
sample size n enlarges to infinity.

To formulate this statement, we introduce the concept of convergence in probability of a
random variable.

Definition 5.4.1
A sequence X1, X2, ... of vector/matrix-valued random variables is said to converge in
probability to a limit random variable X, denoted by

plim
n→∞

Xn = X ,

if
∀α > 0 : lim

n→∞
P [||Xn − X|| ≥ α] = 0 .

In this work we deal with so-called weak consistency which is defined in the following.

Definition 5.4.2
An estimator θ̂n of a parameter θ∗ is called a weak consistent estimator, if

plim
n→∞

θ̂n = θ∗ .

In [GI83] or [SW89] the following property is stated:
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Remark 5.4.3
Sufficient for weak consistency of an estimator θ̂n is that the limit of the averaged sum of
squares,

plim
n→∞

1

n
Sn(θ) , (5.4)

is minimized at the true value θ∗.

A useful tool to prove convergence in probability is Chebyshev’s inequality.

Theorem 5.4.4 (Chebyshev’s inequality)
Let X be a real-valued random variable with E[X] < ∞ and Var[X] < ∞. Then for any
α ∈ R>0

P [|X − E[X]| ≥ α] ≤ Var[X]

α2
.

We further assume:

(A5) Let Θ ⊂ R
p compact and θ∗ ∈ Θ. We assume x(t, θ) is continuous

in θ for all θ ∈ Θ.

Hence, x(t, θ) is bounded in θ for θ ∈ Θ.

Except for the pharmacokinetics model for multiple i.v. administration, x(t, θ) is also
continuous in t for t ∈ [0, tend]. However, in general

(A6) sup{|x(t, θ1) − x(t, θ2)| : θ1, θ2 ∈ Θ} < Mt < ∞ for all t ∈ [0, tend].

The main result of this section is formulated in the following proposition:

Theorem 5.4.5 (Weak consistent estimator)
Let (A1)-(A6) hold. Further we assume:

lim
n→∞

1

n

n∑

i=1

wiσ
2
i = C1 < ∞ , (5.5)

lim
n→∞

1

n

n∑

i=1

w2
i V ar[ε2

i ] = C2 < ∞ (5.6)

and for θ ∈ Θ

lim
n→∞

1

n

n∑

i=1

wi(x(ti, θ
∗) − x(ti, θ))

2 = 0 if and only if θ = θ∗ . (5.7)

Then

plim
n→∞

1

n
Sn(θ)

is minimized at the true value θ∗.
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Proof: We rewrite the averaged sum of squares 1
n
Sn(θ) in terms of errors εi from (5.1)

1

n
Sn(θ) =

1

n

n∑

i=1

wi (yi − x(ti, θ))
2

=
1

n

n∑

i=1

wi (yi − x(ti, θ
∗) + x(ti, θ

∗) − x(ti, θ))
2

=
1

n

n∑

i=1

wi (εi + x(ti, θ
∗) − x(ti, θ))

2 (5.8)

=
1

n

n∑

i=1

wiε
2
i +

2

n

n∑

i=1

wiεi(x(ti, θ
∗) − x(ti, θ)) +

1

n

n∑

i=1

wi (x(ti, θ
∗) − x(ti, θ))

2

(5.9)

and investigate the convergence in probability of (5.9) term by term.

Term 1: We define

Yn :=
1

n

n∑

i=1

wiε
2
i .

Because of (A4) and (5.5)

E[Yn] =
1

n

n∑

i=1

wiE[ε2
i ] =

1

n

n∑

i=1

wiVar[εi] =
1

n

n∑

i=1

wiσ
2
i < ∞

and with (5.6)

Var[Yn] =
1

n2

n∑

i=1

w2
i Var[ε2

i ] < ∞ .

We show

plim
n→∞

1

n

n∑

i=1

wiε
2
i = lim

n→∞
E[Yn] = C1

by applying Chebyshev’s inequality. For all α > 0

P [|Yn − E[Yn]| ≥ α] ≤ 1

α2
Var [Yn] =

1

α2

1

n2

n∑

i=1

w2
i Var

[
ε2

i

]
. (5.10)

Now consider n → ∞. Because of (5.5) and (5.6) we have for all α > 0

lim
n→∞

P[|Yn − E[Yn]| ≥ α] = 0

which is the result.

Term 2: We show for a θ ∈ Θ

plim
n→∞

1

n

n∑

i=1

wiεi (x(ti, θ
∗) − x(ti, θ)) = 0 . (5.11)

58



Consistent weighted least squares estimator

Note that the only stochastic source in (5.11) is εi for i = 1, ..., n. We define

Yn :=
1

n

n∑

i=1

wiεi (x(ti, θ
∗) − x(ti, θ)) .

Because of (A3)

E [Yn] =
1

n

n∑

i=1

wiE[εi] (x(ti, θ
∗) − x(ti, θ)) = 0 .

With the assumptions we have

Var [Yn] =
1

n2

n∑

i=1

w2
i σ

2
i (x(ti, θ

∗) − x(ti, θ))
2

︸ ︷︷ ︸
<M2

ti

< ∞ .

Chebyshev’s inequality gives for all α > 0

P [|Yn| ≥ α] ≤ 1

α2

1

n2

n∑

i=1

w2
i σ

2
i (x(ti, θ

∗) − x(xi, θ))
2 . (5.12)

With (5.5)

lim
n→∞

1

n2

n∑

i=1

w2
i σ

2
i (x(ti, θ

∗) − x(ti, θ))
2

︸ ︷︷ ︸
<M2

ti
≤M

≤ lim
n→∞

1

n
ωM

1

n

n∑

i=1

wiσ
2
i = 0

and therefore, we showed (5.11).

Term 3: Apply assumption (5.7) to term 3 in (5.9).

Summarized we obtain

plim
n→∞

1

n
Sn(θ) = C1 + lim

n→∞

1

n

n∑

i=1

wi (x(ti, θ
∗) − x(ti, θ))

2

is minimized at θ = θ∗.

¤

Finally, we shortly comment on the stated assumptions in the above proposition.

Assumption (5.7) is reasonable because it reflects that the model is not over-parameterized.
That means, no arbitrary sets of parameters in a local range produce the same fitting re-
sults. This is the basis for physiological interpretation of model parameters and finally,
to apply them for predictions for higher species. Because our models are build on phar-
macological principles, we take special care on over-parameterization and therefore, (5.7)
is fulfilled in our PKPD models.
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Assumptions (5.5) and (5.6) are technical conditions. Note that these assumptions are
formally different from the conditions stated in [SW89]. However, for example, choosing
the weights as in situation 3 in Section 5.3, (5.5) results in

C1 = σ2

which is one of the results from the consistency observation in ordinary least squares,
compare [SW89]. Hence, (5.5) is reasonable because the weights are mostly chosen in
such a way that they somehow correspond to the inverse of the variance, see Section 5.3.
Finally, (5.6) is actually a condition on the fourth moment of εi. Note that this moment
exists for most distributions used in application.

Summarizing, all stated assumptions are connected to practice.

5.5 Asymptotic normality of the weighted least squares

estimator

In this section we investigate the asymptotic normality of the WLS estimator θ̂n. For that
purpose we first of all introduce the concept of convergence in distribution, see [DM93].

Definition 5.5.1
A sequence X1, X2, ... of vector-valued random variables is said to converge in distribution
to a limit random variable X, if

lim
n→∞

P [Xn ≤ Z] = P[X ≤ Z]

for all vectors Z such that the limiting distribution function P [X ≤ Z ′] is continuous in
Z ′ at Z ′ = Z. One writes:

Xn
d−→ X for n → ∞ .

An important relationship between convergence in probability and distribution is formu-
lated in Slutsky’s theorem.

Theorem 5.5.2 (Slutsky)
Let X1, X2, ... be a sequence of matrix-valued random variables and C a constant matrix.
Further let Y1, Y2, ... be a sequence of vector-valued random variables and Y a vector-valued

random variable. If plim
n→∞

Xn = C and Yn
d−→ Y , then

XnYn
d−→ CY for n → ∞ .

Now we present the standard definition of an asymptotically normal distributed estimator
for a sample size tending to infinity.

Definition 5.5.3
An estimator T̂n is asymptotically normal distributed, if

√
n(T̂n − T ∗)

d−→ N (0, Cov) for n → ∞ (5.13)

where Cov is the finite covariance matrix.
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Asymptotic normality of the weighted least squares estimator

In practice, one constructs from the limiting distribution in (5.13) the approximate dis-
tribution [Gre12] for large n denoted by

T̂n
a∼ N

(
T ∗,

1

n
Cov

)
. (5.14)

The key theorem to prove asymptotic normality is the following version of the central
limit theorem, compare e.g. with [Gre12].

Theorem 5.5.4 (Multivariate central limit theorem)
Let Γ1, Γ2, ... be a sequence of independent vector-valued random variables such that E[Γi] =
µi, Cov[Γi] = Qi and all mixed third moments of the multivariate distribution are finite.
Let

Γn =
1

n

n∑

i=1

Γi , µn =
1

n

n∑

i=1

µi and Qn =
1

n

n∑

i=1

Qi .

Assume that

lim
n→∞

Qn = Q (5.15)

where Q is a finite, positive definite matrix and that for every i

lim
n→∞

(nQn)−1Qi = 0 . (5.16)

Then √
n

(
Γn − µn

) d−→ N (0, Q) for n → ∞ .

Before we formulate the main result of this section, we present another important tool.
Due to [Ame01] it yields:

Theorem 5.5.5
Let X1, X2, ... be a sequence of random variables with Xn : R

p → R depending on a
parameter θ. Further let X1(θ), X2(θ), ... converge uniformly in probability in θ ∈ D that
means

lim
n→∞

P[sup
θ∈D

|Xn(θ)| < α] = 1 for any α > 0 ,

to a non-stochastic function X(θ). Let θ̂n be a consistent estimator of θ∗ and X(θ) con-
tinuous at θ∗. Then

plim
n→∞

Xn(θ̂n) = X

(
plim
n→∞

θ̂n

)
= X(θ∗) .

Now we consider our situation.

Let Uθ∗ be an open neighborhood of θ∗ in Θ. In order to prove asymptotic normality
we need the following condition:

• Let x(t, θ) be two times partial differentiable with respect to θ for t ∈ [0, tend],
θ ∈ Uθ∗ and the partial derivatives are continuous.
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For a better notation we introduce the following matrices. Let

P (θ) :=




∂x(t1,θ)
∂θ1

. . . ∂x(t1,θ)
∂θp

...
...

∂x(tn,θ)
∂θ1

. . . ∂x(tn,θ)
∂θp


 ∈ R

n,p

be the Jacobian matrix, W :=diag(w1, w2, ..., wn) ∈ R
n,n a diagonal matrix consisting of

the weights and G :=diag(σ2
1, σ

2
2, ..., σ

2
n) ∈ R

n,n a diagonal matrix describing the variances.
Note the dependency on the sample size n in the dimension of the matrices.

The following proposition shows that the WLS estimator θ̂n is asymptotically normal
distributed under certain conditions.

Theorem 5.5.6 (Asymptotic normality)
Let θ̂n be a consistent WLS estimator. We assume:

• The matrix function series

Xn(θ) :=
1

n

n∑

i=1

wi
∂x(ti, θ)

∂θ

∂x(ti, θ)

∂θT
∈ R

p,p (5.17)

converges uniformly for all θ ∈ Uθ∗ towards a regular matrix Ω(θ) ∈ R
p,p for n → ∞.

• The matrix function series

Y n(θ1, θ2) :=
1

n

n∑

i=1

wix(ti, θ1)
∂2x(ti, θ2)

∂θ∂θT
∈ R

p,p (5.18)

converges uniformly for all θ1, θ2 ∈ Uθ∗ towards a finite matrix Y for n → ∞.

• The independent stochastic sequence

Γn = −wnεn
∂x(tn, θ

∗)

∂θ
∈ R

p (5.19)

fulfills the assumptions of Theorem 5.5.4.

Then θ̂n is asymptotically normal distributed, that means

√
n

(
θ̂n − θ∗

)
d−→ N (0,Cov) for n → ∞

with Cov = Ω(θ∗)−1Σ(θ∗)Ω(θ∗)−1 where

Ω(θ∗) = plim
n→∞

1

n
P T (θ̂n)WP (θ̂n) (5.20)

and

Σ(θ∗) = lim
n→∞

1

n
P T (θ∗)WGWP (θ∗) . (5.21)
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Proof: The sum of squares reads

Sn(θ) =
n∑

i=1

wi (yi − x(ti, θ))
2 .

We apply the mean value theorem to ∂Sn

∂θ
in order to obtain a representation of the

difference between θ̂n and θ∗. Hence, we receive the existence of the random variable θ̃n

between θ̂n and θ∗ such that

∂Sn(θ̂n)

∂θ
− ∂Sn(θ∗)

∂θ
=

∂2Sn(θ̃n)

∂θ∂θT

(
θ̂n − θ∗

)
. (5.22)

Because θ̂n is a WLS estimator

∂Sn(θ̂n)

∂θ
= 0 ∈ R

p . (5.23)

With ∂2Sn(θ̃n)
∂θ∂θT invertible (as we will see in the following) we obtain

(
θ̂n − θ∗

)
= −

(
∂2Sn(θ̃n)

∂θ∂θT

)−1

· ∂Sn(θ∗)

∂θ
. (5.24)

Multiplying (5.24) by
√

n gives the representation for asymptotically normal distribution

√
n

(
θ̂n − θ∗

)
= −

(
1

n

∂2Sn(θ̃n)

∂θ∂θT

)−1

· 1√
n

∂Sn(θ∗)

∂θ
. (5.25)

We split the investigation of the behavior of the right hand side in (5.25) into two parts.

Part 1: We show for the first term in (5.25)

plim
n→∞

(
1

n

∂2Sn(θ̃n)

∂θ∂θT

)−1

=
1

2
Ω(θ∗)−1 ∈ R

p,p . (5.26)

Because θ̂n is a consistent estimator we have θ̂n ∈ Uθ∗ for a large n and due to the
convexity of Uθ∗ , θ̃n ∈ Uθ∗ and therefore, θ̃n is a consistent estimator,

plim
n→∞

θ̃n = θ∗ .

We differentiate (5.8)

1

n
Sn(θ) =

1

n

n∑

i=1

wi(εi + x(ti, θ
∗) − x(ti, θ))

2
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Asymptotic normality of the weighted least squares estimator

twice with respect to θ and obtain

1

n

∂2Sn(θ)

∂θ∂θT
=

2

n

n∑

i=1

wi
∂x(ti, θ)

∂θ

∂x(ti, θ)

∂θT
− 2

n

n∑

i=1

wix(ti, θ
∗)

∂2x(ti, θ)

∂θ∂θT

+
2

n

n∑

i=1

wix(ti, θ)
∂2x(ti, θ)

∂θ∂θT
− 2

n

n∑

i=1

wiεi
∂2x(ti, θ)

∂θ∂θT

=: 2Xn(θ) − 2Y n(θ∗, θ) + 2Y n(θ, θ) − 2Zn(θ) . (5.27)

We investigate (5.27) term by term. The R
p,p is equipped with the matrix norm

||A||∞ = max{
p∑

β=1

|Aα,β| |α = 1, ..., p} .

Note that for a sequence of matrices A1, A2, ...

||An − A||∞ → 0 ⇐⇒ |(An)α,β − Aα,β| → 0 , α, β ∈ {1, ..., p} . (5.28)

This opens the route to apply Theorem 5.5.5 component-by-component.

We have that Xn(θ), Y n(θ) and Zn(θ) are continuous in θ ∈ Uθ∗ for i = 1, ..., n. Be-
cause of the assumed uniformly convergence also the limits are continuous.

Consider the first term Xn : R
p → R

p,p in (5.27). Then we obtain for each component

with (5.17) for θ̃n

plim
n→∞

X
α,β

n (θ̃n) = Ωα,β

(
plim
n→∞

θ̃n

)
= Ωα,β(θ∗) , α, β ∈ {1, ..., p} .

Therefore, with (5.28)

plim
n→∞

2Xn(θ̃n) = plim
n→∞

2

n

n∑

i=1

wi
∂x(ti, θ̃n)

∂θ

∂x(ti, θ̃n)

∂θT
= plim

n→∞

2

n
P T (θ̃n)WP (θ̃n) = 2Ω(θ∗) .

For the second and third term in (5.27) we obtain by analogous argumentation with (5.18)

plim
n→∞

Y n(θ∗, θ̃n) − plim
n→∞

Y n(θ̃n, θ̃n)

= Y

(
θ∗, plim

n→∞
θ̃n

)
− Y

(
plim
n→∞

θ̃n, plim
n→∞

θ̃n

)
= Y (θ∗, θ∗) − Y (θ∗, θ∗) = 0 .

For the fourth term we consider a compact convex neighborhood B ⊂ Uθ∗ with θ∗ ∈ B.
The components for α, β ∈ {1, ..., p} read with θ ∈ B

∣∣∣Zα,β

n (θ)

∣∣∣ =

∣∣∣∣
1
n

n∑
i=1

wiεi

(
∂2x(ti,θ)
∂θ∂θT

)
α,β

∣∣∣∣ ≤
1

n

∣∣∣∣
n∑

i=1

wiεiMα,β

∣∣∣∣ .
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We have

E

[∣∣∣Zα,β

n (θ)

∣∣∣
]

= 0

Var
[∣∣∣Zα,β

n (θ)

∣∣∣
]
≤ 1

n2
M2

α,β

n∑

i=1

w2
i σ

2
i ≤ 1

n2
M2

α,βω

n∑

i=1

wiσ
2
i < ∞

because of (5.5). Applying Chebyshev’s inequality gives

P

[∣∣∣Zα,β

n (θ)

∣∣∣ ≥ α
]
≤ 1

n

(
M2

α,βω
1

n

n∑

i=1

wiσ
2
i

)

and with (5.5) for n → ∞

plim
n→∞

Z
α,β

n (θ) = 0 for θ ∈ B .

Hence, for large n we have plim
n→∞

Z
α,β

n (θ̃n) = 0 and finally, with (5.28)

plim
n→∞

Zn(θ̃n) = 0 .

Summarizing, we showed

plim
n→∞

1

n

∂2Sn(θ̃n)

∂θ∂θT
= 2Ω(θ∗)

where Ω(θ∗) is invertible because of assumption (5.17).

Using the matrix inverse rule for probability limits (see e.g. [Gre12]) gives

plim
n→∞

(
1

n

∂2Sn(θ̃n)

∂θ∂θT

)−1

=
1

2
Ω(θ∗)−1 ∈ R

p,p .

Moreover, the inverse in (5.24) exists.

Part 2: The second term in (5.25) reads

1√
n

∂Sn(θ∗)

∂θ
= − 2√

n

n∑

i=1

wi (yi − x(ti, θ
∗))

∂x(ti, θ
∗)

∂θ
= − 1√

n

n∑

i=1

2wiεi
∂x(ti, θ

∗)

∂θ
.

We set

Γi := −2wiεi
∂x(ti, θ

∗)

∂θ
∈ R

p

and apply the central limit theorem. Note that (5.19) ensures the applicability of Theorem
5.5.4. The expected value of Γi is E[Γi] = 0 ∈ R

p for i = 1, ..., n. The covariance matrix
reads

Cov[Γi] = Qi = 4σ2
i w

2
i

∂x(ti, θ
∗)

∂θ

∂x(ti, θ
∗)

∂θT
.
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We obtain

Qn =
1

n

n∑

i=1

Qi =
1

n

n∑

i=1

4σ2
i w

2
i

∂x(ti, θ
∗)

∂θ

∂x(ti, θ
∗)

∂θT
=

4

n
P T (θ∗)WGWP (θ∗) .

Because of (5.19) we have by Theorem 5.5.4

√
n

(
1

n

n∑

i=1

Γi −
1

n

n∑

i=1

E[Γi]

)
=

1√
n

∂Sn(θ∗)

∂θ

d−→ N (0, 4Σ(θ∗)) for n → ∞ . (5.29)

Summarizing we are able to consider the overall behavior of (5.25). We apply Slutsky’s
theorem with the results (5.26) and (5.29). Note that the limit in (5.26) is non-stochastic
and symmetric. Using ACov(X)AT = Cov(AX) gives

√
n

(
θ̂n − θ∗

)
d−→ 1

2
Ω(θ∗)−1N (0, 4Σ(θ∗)) = N

(
0, Ω(θ∗)−1Σ(θ∗)Ω(θ∗)−1

)
.

for n → ∞.
¤

The assumptions in Theorem 5.5.4 are typical statistical conditions, compare with the
different formulations of the central limit theorem in literature, see [Rao87]. Also as-
sumptions (5.17) and (5.18) are typical statistical conditions, compare with the ordinary
least squares approach in literature, see [SW89].

5.6 Confidence interval and coefficient of variation

A confidence interval could be understood as follows, compare e.g. [Bar74]. Consider an

experiment repeated one hundred times. Each experiment would yield an estimate θ̂n.
Calculate for example the 95% confidence interval for each estimate. Then the true value
θ∗ should be contained in about 95 of these 100 intervals. A large confidence interval
indicates that the sample size is maybe to small, the data are not sufficent for estimating
a special parameter or it exists a strong variability in reality.

The true covariance matrix is never known in practice. To account for this uncertainty,
the Student’s t-distribution is used to calculate the confidence interval, see [Fox97].

To introduce the Student’s t-distribution, we firstly define the Chi-Quadrat distribution.

Definition 5.6.1
Let X1, ..., Xn be independent random variables with Xi ∼ N (0, 1) for i = 1, ..., n. Then

n∑

i=1

X2
i ∼ χ2

n

is Chi-Quadrat distributed with n degrees of freadom.
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Definition 5.6.2
Let X ∼ N (0, 1), Y ∼ χ2

n and X,Y independent. The Student’s t-distribution is defined
as the distribution of the random variable

tn =
X√

Y
n

. (5.30)

The proved asymptotic normality of the WLS estimator θ̂n gives approximately

θ̂n
a∼ N

(
θ∗,

1

n
Ω(θ∗)−1Σ(θ∗)Ω(θ∗)−1

)
=: N (θ∗, Cov(θ∗)) .

Now we denote by θj the jth entry of the vector θ ∈ R
p for j = 1, ..., p and suppress the

sample size n. Let ej ∈ R
p be the vector with a one at the jth place and zero elsewhere.

Hence

θ̂j = eT
j θ̂

a∼ N
(
eT

j θ∗, eT
j Covjj(θ

∗)ej

)
= N (θ∗j , Covjj(θ

∗)) ⇐⇒ (θ̂j − θ∗j )√
Covjj(θ∗)

a∼ N (0, 1) .

(5.31)

An appropriate estimator for Cov(θ∗) reads with (5.20), (5.21) and Ĝ = diag(s2
1, ..., s

2
n)

Ĉov = Cov(θ̂) =
1

n

(
1

n
P T (θ̂)WP (θ̂)

)−1
1

n
P T (θ̂)WĜWP (θ̂)

(
1

n
P T (θ̂)WP (θ̂)

)−1

=
(
P T (θ̂)WP (θ̂)

)−1

P T (θ̂)WĜWP (θ̂)
(
P T (θ̂)WP (θ̂)

)−1

(5.32)

where s2
i denotes the sample variance. Compare representation (5.32) e.g. with [DSW09]

and see Section 5.7 for the design of the variance estimator. Now we further assume that

εi ∼ N (0, σ2
i ) for i = 1, ..., n .

With appropriate weights (see e.g. situation 3 in Section 5.3) we obtain approximately
εi

a∼ N (0, σ2) and following [SL77] and [SW89] gives approximately

(n − p)Ĉovjj

Covjj(θ∗)

a∼ χ2
n−p for j = 1, ..., p (5.33)

and Ĉovjj independent from θ̂j for j = 1, ..., p. Hence, definition (5.30) with (5.31) and
(5.33) gives approximately

(θ̂j − θ∗j )√
Ĉovjj

a∼ tn−p

compare [SW89]. In terms of probability we obtain with α ∈ [0, 1] the confidence interval
for the confidence level 1 − α

P

[
θ̂j − t

1−α
2

n−p

√
Ĉovjj ≤ θ∗j ≤ θ̂j + t

1−α
2

n−p

√
Ĉovjj

]
= 1 − α .
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Hence, the approximated (1 − α)-confidence interval reads

[
θ̂j − t

1−α
2

n−p

√
Ĉovjj , θ̂j + t

1−α
2

n−p

√
Ĉovjj

]
. (5.34)

Note that unrealistic negative values could appear for the left interval boundary. In the
following we mark such values by zero.

The estimator for the coefficent of variation of the WLS estimator θ̂j in percent reads

CV%(θ̂j) = 100 · Ĉovjj

θ̂j

. (5.35)

see [DSW09]. If CV% is larger than 100, we mark it by “>100” in the following.

5.7 Application to simultaneous PKPD fits

Data from PKPD experiments consists of a control group (placebo) and different dosing
groups (administered drug). Let m be the number of all groups, then the sum of squares
reads

S(θ) =
m∑

k=1

nk∑

i=1

wik(yik − x(tik, dosek, θ))
2

where nk, k = 1, ...,m, is the number of the measurements of each group with n1 + · · · +
nm = n. Note that we emphasize the dependency of dose in the PKPD model. A common
assumption (see e.g. [DSW09]) is that every dosing group has a separate variance σ2

k. An
appropriate estimator reads

s2
k =

1

nk − p
m

nk∑

i=1

wik(yik − x(tik, dosek, θ̂))
2

where p is the number of model parameters, see [DSW09]. Hence, the variance estimator
matrix reads

Ĝ = diag


s2

1, . . . , s
2
1︸ ︷︷ ︸

n1

, . . . , s2
m, . . . , s2

m︸ ︷︷ ︸
nm


 . (5.36)

Statistical a posteriori analysis for a point estimator:

Let θ̂ be a weighted least squares estimator obtained by a fitting process for a sample
of size n. The a posteriori statistical analysis is obtained as follows:

The covariance matrix is calculated by (5.32) with the variance estimates (5.36). The

coefficient of variation for a single parameter estimator θ̂j, j = 1, ...., p, is calculated by

(5.35). The (1-α)-confidence interval for θ̂j is obtained with (5.34).

68



Discussion and outlook

Finally, we use the coefficient of determination R2 ∈ [0, 1] as a goodness of fit criteria, see
[DSW09]. A value close to 1 indicates that the model describes the data well. For each
dosing group k = 1, ...,m we calculate

R2
k =

nk∑
i=1

(
x(ti, dosek, θ̂) − x

)
(yik − yk)

nk∑
i=1

(
x(ti, dosek, θ̂) − xk

)2 n∑
i=1

(yik − xk)2

where xk = 1
nk

nk∑
i=1

x
(
ti, dosek, θ̂

)
and yk = 1

nk

nk∑
i=1

yik.

5.8 Discussion and outlook

In this chapter we investigated the asymptotical behavior of the weighted least squares
estimator based on reasonable statistical assumptions and derived statistical characteris-
tics, like confidence intervals and coefficient of variation for parameter estimates.

We remark that in statistics, the weights sometimes are also considered as a function
of time, see [Rao97]. However, in our data situation such extensions are of no further
help. Typically, in PKPD weights are used to deal with unequal variances observed in
data.

We want to emphasize that on the way towards calculation of a confidence interval many
assumptions and approximations are performed. Further, in our situation the amount of
data is limited. Hence, we suggest not to overate the presented statistical characteristics
obtained from a fitting process.

Note that in this work, we are not interested in a statistical population analysis (see
[DG95] or [Bon06]) as applied in clinical phase II/III, due to several reasons. First, our
amount of individuals (ranging from 20-80) is not comparable to the situation in clinics
Second, the existence of typical individual covariates (e.g. age, weight, smoker,...) is not
given in preclinics.

69





Chapter 6

Modeling of Tumor Growth and

Anticancer Effects of Mono- and

Combination Therapy

It is reported in a study from the Council of the European Union (see [dEU08]) in 2008,
that every third European develops cancer once in his lifetime. Therefore, a huge field in
drug development deals with the understanding of the mechanisms of cancer development
and the design of appropriate anticancer drugs.

It is generally stated in literature that the work from Anna Kane Laird [Lai64] "Dynamics
of tumor growth" published in 1964 initiated the mathematical modeling of tumor growth.
Laird applied the Gompertz equation (here presented in the original formulation)

W

W0

= e
A
α

(1−e−αt)

to describe unperturbed tumor growth in a test tube. W denotes the tumor size in time,
W0 is the initial tumor size and A, α are growth related parameters. This model realizes
a sigmoid growth behavior and therefore, describes the three significant phases of tumor
growth. First, a tumor grows exponentially, after a while the tumor growth gets linear
due to limits of nutrient supply and finally, the tumor growth completely saturates. Laird
applied the Gompertz equation to data from mice, rats and rabbits.

In the book of T. E. Wheldon titled "Mathematical models and cancer research" [Whe88]
from 1988, an overview and analysis of the Gompertz model could be found. An im-
portant statement from Wheldon in [Whe88] is that the saturation property of tumors
could often never measured in patients in practice because the host dies in the majority
of cases before this saturation phase begins. Also in preclinics, the experiments have to
be canceled if a specific tumor size is reached due to ethical reasons. Hence, in this work
we present a tumor growth model without a saturation property and focus on the first
two tumor growth phases, namely exponential growth followed by linear growth.

In our experiments, drugs inhibiting the histone deacetylase (class of enzymes) activ-
ity, see [KOM02], were tested. This inhibition leads to the blocking of the cell cycle of
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proliferating cells and therefore, drives the cancer cells in the apoptose (process of a pro-
grammed cell death). At the publication date of this work, the compounds are in phase
I/II and have a promising outlook. But due to confidentiality reasons, no details about
the compounds are presented in this work. In the following, we encrypt all anticancer
compounds by capitals.

The presented experiments were performed in xenograft mice (see e.g. [BD11]). Such
mice develop human solid tumors based on implantation of human cancer cells. The tu-
mor grows on the back of the mice and is measured as volume and recalculated to weight
based on tissue consistency assumptions.

The aim of our project was to develop a PKPD model for tumor growth, describing
mono-therapy (single drug administration) as well as combination therapy (several drugs
are administered). The combination approach is widely applied in cancer treatment. The
main motivation to combine anticancer drugs in clinics is to obtain a synergistic response.
Based on this synergistic effect the amount of dose could be reduced in order to lower
toxicity in patients. Hence, also in early drug development one main objective is to iden-
tify drug combinations which have an enhanced pharmacological effect and to rank them
according to their interaction intensity.

This chapter is structured in the following way. In Section 6.1 a brief introduction to
the experimental setup is presented. In Section 6.2 we develop a tumor growth model
for unperturbed growth (no drug administration). Then we extend this tumor growth
model by a drug-effect term for mono-therapy in Section 6.3. We introduce assumptions
about drug effects and include the pharmacokinetics in the model. The resulting model
consists of n+1 ordinary differential equations based on a n-dimensional transit compart-
ment system (compare Section 4.2) describing different damaging stages of the attacked
tumor cells. Section 6.4 deals with the extension of the PKPD model to combination
therapy. In Section 6.5 an important secondary parameter describing the necessary mean
concentration for tumor eradication is calculated. This parameter opens the route to
compare experiments in animals and humans and hence, could be used to perform animal
to human predictions. For example, Rocchetti presented in 2007, see [RSP+07], based
on a structural similar tumor growth model the scaling between animals and humans for
known anticancer drugs.

In the next section we refine the results from Section 6.1-6.5 and reformulate our PKPD
model for mono-therapy by delay differential equations of lifespan type based on the the-
oretical results from Section 4.4. This reformulation reduces the number of differential
equations to exactly two, where one describes the proliferating cells and the other the
attacked tumor cells by a drug.
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6.1 Experimental setup

For pharmacokinetic measurements, single oral doses of the drugs were administered to
five mice. The PK was either modeled by a one or two compartment model with p.o.
administration.

The different dosing groups (including the placebo group) consists at any time of 8-10
mice. The tumor grows at the back of the mice and is visually accessible. The dimension
of the tumors, more precisely, the length and width, were measured by an electronic cal-
iber. Using this information the volume was calculated and recalculated as weight based
on tissue consistency assumptions.

6.2 Unperturbed tumor growth

It was observed in more than 70 data sets in our experiments as well as in several data
from literature ([SMC+04], [MSP+06], [SPRVC07]) that unperturbed tumor growth in
xenograft mice consists of an initial exponential growth phase followed by a linear growth
phase. The aim of this section is to model this behavior with a realistic right hand side
of the differential equation

w′(t) = f(w(t)) , w(0) = w0

where w0 is the inoculated tumor weight (the amount of implanted human tumor cells
into the xenograft mouse). The tumor weight is denoted by w(t).

In 2004, Simeoni et al [SMC+04] presented a model consisting of an exponential and
a linear growth phase in order to describe the tumor growth in xenograft mice in time.
Their tumor growth function gs : R≥0 → R≥0 reads

gs(w) =

{
λ0w , w ≤ wth

λ1 , w > wth

, wth =
λ1

λ0

. (6.1)

The parameter λ0 > 0 describes the exponential growth rate and λ1 > 0 the linear
growth rate. This model has the property that if the weight w reaches a threshold wth,
the exponential growth switches immediately to linear growth. This produces a fast
transition between the exponential and linear phase in w(t). But this fast transition was
found unrealistic in our working group and therefore, we present a new approach with a
more pronounced transition. Further, one directly observes that gs(w) suffers at a lack of
differentiability for w = wth. To overcome this issue, Simeoni et al suggested to apply the
approximation

ga(w) =
λ0w[

1 +
(

λ0

λ1

w
)20

]1/20
(6.2)
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for gs(w) in practice. Unfortunately, this approximation consists of several costly expo-
nentiations and is therefore, questionable also numerically.

Our aim is to model the unperturbed tumor growth by a Michaelis-Menten type of func-
tion, see e.g. [Boh06]. Such an approach is biologically more evident because it allows
a more pronounced transition between the exponential and linear phase. Note that the
Michaelis-Menten approach is a basic equation in biology, see e.g. [Mur89]. The Michaelis-
Menten function reads

g(w) =
aw

b + w
(6.3)

with a, b > 0. First, (6.3) is everywhere differentiable and second, consist of no question-
able raise to higher power.

To achieve physiological meaningful parameters with the same meaning as in Simeoni’s
model we adjust actual values of a and b. We set

lim
w→∞

g(w) = λ1

which ensures that the maximal growth rate of gs coincides with g, hence, a = λ1. The
parameter b in (6.3) describes the point w when g(w) gets equal to a

2
. Therefore, we

identify the half value of the threshold wth by the parameter b and set

g

(
λ1

2λ0

)
=

a

2
(6.4)

which ensures that the half maximal value of gs and g coincide. We end up with the
expression

g(w) =
λ1w

λ1

2λ0

+ w
=

2λ0λ1w

λ1 + 2λ0w
. (6.5)

Differentiation of (6.5) at w = 0 gives g′(0) = 2λ0.

With (6.5) we obtain the model

w′(t) =
2λ0λ1w(t)

λ1 + 2λ0w(t)
, w(0) = w0 (6.6)

for unperturbed tumor growth w(t) with the three parameter

θ = (λ0, λ1, w0) .

Hence, λ0 describes the rate of exponential growth and λ1 the rate of linear growth.

In Figure 6.1 the tumor growth function (6.1) and the tumor growth function (6.5) are
plotted.

In the following we present measurements from four different human tumor cell lines,
namely RKO (cancer of the colon), PC3 (prostate cancer), MDA (breast cancer) and
A459 (lung cancer). These data were fitted by the model (6.6), see Figure 6.2. The
parameter estimates are listed in Table 6.1.
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Figure 6.1: The dashed line is the tumor growth function (6.1) and the solid line is the
tumor growth function (6.5). The parameters are λ0 = 0.2 and λ1 = 0.5.
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Figure 6.2: Different tumor cell lines in xenograft mice fitted with (6.6). In the left panel
the tumor growth is plotted and the right panel shows an observed vs. predicted plot.
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Parameter Explanation RKO PC3 MDA A549

λ0

(CV%)
CI

Exponential rate

0.250
(32.4)
[0.052, 0.448]

0.104
(27.8)
[0.030, 0.178]

0.033
(29.8)
[0.011, 0.057]

0.093
(27.1)
[0.031, 0.155]

λ1

(CV%)
CI

Linear rate

0.223
(18.3)
[0.123, 0.333]

0.275
(43.6)
[0, 0.582]

0.104
(>100)
[0, 0.472]

0.139
(30.6)
[0.035, 0.244]

w0

(CV%)
CI

Inoculated
tumor weight

0.001
(>100)
[0, 0.007]

0.110
(28.7)
[0.029, 0.191]

0.052
(26.2)
[0.021, 0.084]

0.007
(93.5)
[0, 0.024]

Sum of Squares 0.014 0.010 0.006 0.012
R2 0.99 0.99 0.98 0.99

Table 6.1: Model parameter estimates, coefficient of variation and 95%-confidence interval of the fit of unperturbed tumor growth
for different human tumor cell lines in xenograft mice.
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6.3 Perturbed tumor growth for mono-therapy

The next step towards a PKPD tumor growth model is to include the pharmacokinetics
of a drug, or more precisely, the perturbation of the tumor growth by an anticancer
agent. It is generally observed that the pharmacological effect is delayed due to the drug
concentration. For example, Lobo and Baltasar [LB02] stated that "chemotherapeutic
effects often appear days or weeks following drug exposure" in humans. Therefore, our
first assumption reads:

(A1) The effect (death of proliferating cells) due to drug concentration
is delayed.

Lobo and Baltasar presented in 2002 a PKPD model for delayed chemotherapeutic effects
with respect to drug concentration. They applied a transit compartment model (see
Chapter 4) to delay the drug concentration. In 2004, Simeoni and co-workers presented
a tumor growth model for data measured in xenograft mice. They also applied a transit
compartment model, but instead of delaying the effect of the drug, it is assumed that
proliferating cells attacked by the drug will pass through different damaging stages until
the cells finally and irrevocably die. Hence, the attacked tumor cells have a lifespan. We
formulate this as second assumption:

(A2) Tumor cells affected by drug action stop to proliferate and will
irrevocably die after a certain lifespan.

The effect of the drug on proliferating cells is described by a linear drug-effect term (see
Section 4.6) of the form

e(kpot, c(t)) = kpot · c(t)
where c(t) is the pharmacokinetics of the drug and kpot > 0 the potency parameter of the
drug. Because we have only two dosing groups (placebo and one drug administration) in
our performed experiments, the linear effect term is an appropriate choice. We remark
that the main focus in our experiments laid on testing compounds and to rank them
among each other by their potency.

For the first, we also apply a transit compartment model to describe different stages
of dying tumor cells. We denote by p(t) the amount of proliferating tumor cells and by
d1(t), ..., dn(t) the different stages of dying tumor cells attacked by an anticancer agent.
Since, the non-proliferating cells d1, ..., dn still add to total tumor mass, the total tu-
mor volume w is the sum of proliferating tumor cells p and non-proliferating tumor cells
d1, ..., dn. In Figure 6.3 we present the schematic overview of the PKPD model for unper-
turbed and perturbed tumor growth based on transit compartments.

Only proliferating cells that are not affected by drug action contribute to the tumor
growth. Therefore, the tumor growth function g(w) of the total tumor consisting of pro-
liferating and non-proliferating cells is slowed down by the factor p

w
because p represents

that portion of total tumor volume w that is actually proliferating.
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Figure 6.3: Schematic overview of the PKPD model for unperturbed and perturbed tumor
growth based on mono-therapy.

In addition to the three parameters λ0, λ1 and w0 for unperturbed tumor growth we
have the drug potency parameter kpot and the transit rate k between the compartments
of the dying tumor cells.

The PKPD model for mono-therapy with transit compartments reads

p′(t) =
2λ0λ1p(t)

(λ1 + 2λ0p(t))
· p(t)

w(t)
− kpot · c(t) · p(t) , p(0) = w0 (6.7)

d′
1(t) = kpot · c(t) · p(t) − k · d1(t) , d1(0) = 0 (6.8)

d′
i(t) = k · di−1(t) − k · di(t) , di(0) = 0 , i = 2, ..., n (6.9)

w(t) = p(t) + d1(t) + · · · + dn(t) , (6.10)

with the model parameters
θ = (λ0, λ1, w0, kpot, k) .

The total tumor weight is denoted by w(t).

The model provides information regarding the lifespan (called time-to-death in [KWLS09])
T of the attacked tumor cells, which is the mean transit time that it takes for the tumor
cells, affected by the action of a drug, to go through the cascade of damaging events to
cell death. In our case the average lifespan is computed by

T =
n

k
(6.11)

after a successful fitting process as a secondary parameter.

We present different simultaneous fits of unperturbed and perturbed data with (6.7)-
(6.10) and n = 3 in Figure 6.2 and the parameter estimates in Table 6.2. See Appendix
B for pharmacokinetic parameter.
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Drug A2 120 mg/kg
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Control Data
Drug B 100 mg/kg
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Control Data
Drug C 150 mg/kg
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Figure 6.4: In every plot the unperturbed and perturbed tumor growth data was simul-
taneously fitted. In the left upper panel the drug A1 was administered at day 15,16,17
and 18 with 180 mg/kg. In the right upper panel the drug A2 was administered 8 times
every day starting from day 15 with 120 mg/kg. In the left middle panel the drug B was
administered at day 12,13,14,15 and 16 with 100 mg/kg. In the left lower panel the drug
C was administered 12 times every day starting from day 11 with 100 mg/kg. In the right
lower panel the drug C was administered 12 times every day starting from day 11 with
150 mg/kg.
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Parameter Explanation A1 180 mg/kg A2 120 mg/kg B 100 mg/kg C 100 mg/kg C 150 mg/kg

λ0

(CV%)
CI

Exponential rate

0.127
(26.4)
[0.056, 0.198]

0.121
(30.5)
[0.042, 0.199]

0.194
(35.7)
[0.038, 0.351]

0.136
(28.5)
[0.054, 0.218]

0.196
(36.6)
[0.034, 0.359]

λ1

(CV%)
CI

Linear rate

0.293
(18.3)
[0.179, 0.408]

0.313
(22.8)
[0.161, 0.465]

0.246
(22.1)
[0.123, 0.370]

0.280
(17.9)
[0.174, 0.387]

0.238
(21.8)
[0.120, 0.355]

w0

(CV%)
CI

Inoculated tumor weight

0.057
(57.2)
[0, 0.126]

0.059
(67.5)
[0, 0.143]

0.010
(>100)
[0, 0.038]

0.049
(65.6)
[0, 0.118]

0.010
(>100)
[0, 0.040]

kpot

(CV%)
CI

Drug potency

0.180
(15.1)
[0.122, 0.234]

0.007
(12.1)
[0.005, 0.009]

0.007
(12.7)
[0.006, 0.010]

0.015
(45.5)
[0.001, 0.030]

0.012
(24.5)
[0.005, 0.018]

k
(CV%)
CI

Transit rate

7.22
(>100)
[0, 46.7]

2.97
(60.7)
[0, 6.805]

0.666
(31.4)
[0.193, 1.134]

13.7
(>100)
[0, 488]

10.6
(>100)
[0, 130]

Sum of Squares 0.150 0.269 0.032 0.166 0.031
R2 0.99 / 0.99 0.99 / 0.91 0.99 / 0.99 0.99 / 0.99 0.99 / 0.99

Table 6.2: Model parameter estimates, coefficient of variation and 95%-confidence interval of the simultaneous fit for unperturbed
and perturbed tumor growth with n = 3. Further the secondary parameter T is presented. The sum of squares as well as the
goodness of fit criteria R2 (first unperturbed, second perturbed) are presented.
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6.4 Perturbed tumor growth for combination therapy

In cancer drug development, a major aim is to combine different drugs in order to max-
imize the effect. For example, if the combination of two drugs has a synergistic effect,
then the administered doses could be decreased in order to lower the toxicity in patients,
see [BFK+09]. In this section we present an approach to model data from combination
therapy and to explicitly quantify the effect of combination therapy.

To adjust the PKPD tumor growth model for combination therapy we follow a suggestion
of Chakraborty and Jusko [CJ02] and include a combination effect parameter ψ into the
model. This parameter ψ quantifies the interaction of the drugs. Again we assume a
linear drug-effect term for each drug and multiply one of the linear drug-effect terms by
the effect parameter ψ. The drug-effect term then reads

e(ψ) = kA
potcA(t) + kB

potcB(t)ψ (6.12)

where kA
pot, k

B
pot are the drug potency parameter of drug A and B. The concentrations of

drug A and B are denoted by cA(t) and cB(t), respectively.

The combination effect parameter ψ in (6.12) has the following meaning:

ψ





< 1 antagonistic effect

= 1 additive effect

> 1 synergistic effect

.

The investigation of combination therapy data is divided into two steps:

Step 1: Estimate the potency parameter kA
pot and kB

pot of drug A and B from mono-therapy.

Step 2: The PKPD model for combination therapy based on transit compartments then
reads with (6.12)

p′(t) =
2λ0λ1p(t)2

(λ1 + 2λ0p(t))w(t)
− (kA

potcA(t) + kB
potcB(t)ψ)p(t) , p(0) = w0 (6.13)

d′
1(t) = (kA

potcA(t) + kB
potcB(t)ψ)p(t) − k · d1(t) , d1(0) = 0 (6.14)

d′
i(t) = k · di−1(t) − k · di(t) , di(0) = 0 , i = 2, ..., n

(6.15)

w(t) = p(t) + d1(t) + · · · + dn(t) , (6.16)

with the five model parameter

θ = (λ0, λ1, w0, ψ, k) .

Steps 1 and 2 could also be merged to one simultaneous fit, consisting of mono-therapy
data of drug A and B as well as the combination therapy data.
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Parameter Explanation Comb 1 Comb 2 Comb 3

λ0

(CV%)
CI

Exponential rate

0.151
(31.8)
[0.049, 0.253]

0.141
(33.1)
[0.042, 0.241]

0.172
(33.7)
[0.041, 0.033]

λ1

(CV%)
CI

Linear rate

0.271
(17.8)
[0.168, 0.374]

0.282
(19.8)
[0.163, 0.400]

0.260
(24.4)
[0.117, 0.404]

w0

(CV%)
CI

Inoculated
tumor weight

0.036
(82.2)
[0, 0.098]

0.041
(82.6)
[0, 0.114]

0.015
(>100)
[0, 0.051]

ψ
(CV%)
CI

Combination
effect
parameter

0.837
(28.1)
[0.336, 1.334]

0.461
(53.1)
[0, 0.983]

1.783
(19.7)
[0.991, 2.576]

k
(CV%)
CI

Transit rate

1.61
(31.4)
[0.533, 2.687]

2.58
(56.5)
[0, 5.695]

0.491
(16.2)
[0.311, 0.672]

Sum of Squares 0.197 0.271 0.031
R2 0.99 / 0.95 0.99 / 0.85 0.99 / 0.98

Table 6.3: Model parameter estimates, coefficient of variation and 95%-confidence inter-
val of the simultaneous fit with unperturbed and perturbed tumor growth for combination
therapy with n = 3. In Comb 1, the drug A1 180 mg/kg and drug C 100 mg/kg is given in
combination. In Comb 2, the drug A2 120 mg/kg and drug C 100 mg/kg is given in com-
bination. In Comb 3, the drug B 100 mg/kg an drug C 150 mg/kg is given in combination.
The dosing time points are equal to those from mono-therapy. The sum of squares as well
as the goodness of fit criteria R2 (first: unperturbed growth, second: perturbed growth) are
presented.
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Drug B 100 mg/kg
Drug C 150 mg/kg
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Control Data
Drug A2 120 mg/kg
Drug C 100 mg/kg
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Figure 6.5: In every plot the unperturbed and perturbed tumor growth data was simultane-
ously fitted. The bars in each panel denote the dosing interval of the drugs. In the upper
panel drug A1 and drug C was administered in combination (Comb 1). In the middle
panel drug A2 and drug C was administered in combination (Comb 2). In the lower panel
drug B and drug C was administered in combination (Comb 3).
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6.5 The threshold concentration

A structural property of the models (6.7)-(6.10) and (6.13)-(6.16) is that the tumor always
starts to re-grow, if the drug concentration vanishes. An interesting theoretical secondary
parameter of the models is the so-called threshold concentration c required for tumor
eradication. Rocchetti and colleagues [RSP+07] have shown a correlation of c from exper-
iments in xenograft animals with the human active dose of several drugs for mono-therapy
available on the market based on a structural similar PKPD model.

Remark 6.5.1
The constant threshold concentration c for tumor eradication reads for mono-therapy

kpotc =
1

2T

(
−1 +

√
1 + 8Tλ0

)

and for combination therapy

kA
potc

A + kB
potc

Bψ =
1

2T

(
−1 +

√
1 + 8Tλ0

)
.

Proof: The stationary equations of (6.7)-(6.10) and (6.13)-(6.16) read

0 =
2λ0λ1p

2

(λ1 + 2λ0p)w
− γp (6.17)

0 = γp − kd1 (6.18)

0 = k(di−1 − di) , i = 2, ..., n (6.19)

with

γ =

{
kpotc mono-therapy

kA
potcA + kB

potcBψ combination therapy
.

(6.18)-(6.19) directly implies

d1 = · · · = dn =
γp

k
. (6.20)

Inserting (6.20) into (6.17) leads to

γ2

(
n

λ1

k
+ 2n

λ0p

k

)
+ γ(λ1 + 2λ0p) − 2λ0λ1 = 0 . (6.21)

We set p = 0 in (6.21) due to the eradication of the tumor and find the unique positive
solution

γ =
−k + k

√
1 + 8nλ0

k

2n

of (6.21) and with T = n
k
, see (6.11), the stated result.

¤
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Tumor growth model for mono-therapy in the lifespan type formulation

6.6 Tumor growth model for mono-therapy in the lifes-

pan type formulation

In Chapter 4 we presented the relationship between transit compartments (TCM) and
lifespan models (LSM), if the number of compartments tends to infinity.

The aim of this section is to reformulate the presented model (6.7)-(6.10) as delay differ-
ential equation of lifespan type. For that purpose we consider the tumor cells attacked by
an anticancer agent as a population, where every cell has a lifespan T . After that lifespan
T the attacked tumor cells have to leave the population.

Consider the general representation of the PKPD tumor growth model

p′(t) = g(η, p(t), d1(t) + · · · + dn(t)) − e(σ, c(t)) · p(t) , p(0) = w0 (6.22)

d′
1(t) = e(σ, c(t)) · p(t) − k · d1(t) , d1(0) = 0 (6.23)

d′
2(t) = k · d1(t) − k · d2(t) , d2(0) = 0 (6.24)

... (6.25)

d′
n(t) = k · dn−1(t) − k · dn(t) , dn(0) = 0 (6.26)

w(t) = p(t) + d1(t) + · · · + dn(t) (6.27)

where w is the tumor weight, g denotes a tumor growth function and e is a drug-effect
term. The model parameters are

θ1 = (η, σ, w0, k)

where η are unperturbed tumor growth related parameters, σ the drug-effect related pa-
rameters, w0 is the inoculated tumor weight and k is the transit rate.

Now we apply Theorem 4.4.1 from Chapter 4.4 to (6.22)-(6.27). The PKPD model (6.22)-
(6.27) is a system with a TCM represented by (6.23)-(6.26), input

kin(t) = e(σ, c(t)) · p(t) (6.28)

and initial density function f ≡ 0. Moreover, the proliferating cells p(t) are governed by
(6.22). On the way to a description of the pharmacological process with an LSM we set

d(t) = d1(t) + · · · + dn(t)

representing the totality of cells attacked by the anticancer agent and replace the TCM
(6.23)-(6.26) by a LSM for the population d(t). Using (6.28) leads to

d′(t) = kin(t) − kin(t − T ) = e(σ, c(t)) · p(t) − e(σ, c(t − T )) · p(t − T )

completed by the initial condition

d(0) = T ·
1∫

0

0 ds = 0
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and the history function

e(σ, c(s)) · p(s) = 0 , −T ≤ s < 0 . (6.29)

In applications (6.29) is fulfilled because no drug is administered before inoculation of the
tumor cells.

Then the reformulation of (6.22)-(6.27) in the lifespan model context reads

p′(t) = g(η, p(t), d(t)) − e(σ, c(t)) · p(t) , p(0) = w0 (6.30)

d′(t) = e(σ, c(t)) · p(t) − e(σ, c(t − T )) · p(t − T ) , d(0) = 0 (6.31)

w(t) = p(t) + d(t) . (6.32)

In the LSM formulation (6.29)-(6.32) we have exactly two differential equations, one for
the proliferating cells p(t) and one governing the population of the attacked tumor cells
d(t). Note that it is not necessary to provide information about p(s) for −T ≤ s < 0 due
to (6.29). See Figure 6.6 for schematic representation. The parameters are

θ2 = (η, σ, w0, T )

where T is the lifespan of the dying tumor cells which is now fitted directly from the data.

This new formulation is from the modeling point of view a serious alternative to the
classical formulation. Here the number of dying tumor stages is reduced to exactly one
stage for the total population of cells attacked by the anticancer agent. This coincides
with the situation in practice, where the choice of the number of compartments n is more
or less arbitrary because the different stages could not be measured.

Finally note, that (6.29)-(6.31) is structurally equal to model III (4.56)-(4.57) from Sec-
tion 4.5 but with a time-dependent first order rate k(t) = e(σ, c(t)).

We applied the model (6.29)-(6.32) with our tumor growth function and the linear drug-
effect term to our data and summarized the fitting results in Table 6.4.
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Figure 6.6: Schematic overview of the PKPD model for unperturbed and perturbed tumor
growth based on mono-therapy in lifespan representation.
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Parameter Explanation A1 180 mg/kg A2 120 mg/kg B 100 mg/kg C 100 mg/kg C 150 mg/kg

λ0

(CV%)
CI

Exponential rate

0.127
(26.2)
[0.056, 0.198]

0.121
(30.6)
[0.042, 0.199]

0.194
(36.6)
[0.033, 0.356]

0.134
(28.4)
[0.053, 0.216]

0.192
(34.6)
[0.042, 0.342]

λ1

(CV%)
CI

Linear rate

0.293
(18.3)
[0.179, 0.408]

0.313
(27.8)
[0.160, 0.465]

0.245
(22.4)
[0.121, 0.369]

0.282
(18.2)
[0.172, 0.391]

0.240
(20.5)
[0.129, 0.352]

w0

(CV%)
CI

Initial tumor weight

0.057
(56.9)
[0, 0.126]

0.059
(67.5)
[0, 0.144]

0.010
(>100)
[0, 0.038]

0.051
(64.6)
[0, 0.120]

0.011
(>100)
[0,0.41]

kpot

(CV%)
CI

Drug potency

0.172
(12.8)
[0.125, 0.219]

0.007
(12.3)
[0.005, 0.009]

0.007
(14.6)
[0.005, 0.010]

0.016
(81.9)
[0, 0.043]

0.011
(30.5)
[0.004, 0.020]

T
(CV%)
CI

Lifespan

0.811
(>100)
[0, 3.026]

0.917
(27.8)
[0.373, 1.461]

3.61
(19.1)
[2.054, 5.173]

0.044
(>100)
[0, 11.8]

0.116
(>100)
[0, 4.754]

Sum of Squares 0.150 0.269 0.037 0.166 0.031
R2 0.99 / 0.99 0.99 / 0.91 0.99 / 0.99 0.99 / 0.99 0.99 / 0.99

Table 6.4: Fitting values of the model (6.32)-(6.32) for the simultaneous fit with unperturbed and perturbed tumor growth for
different drugs in xenograft mice. The sum of squares as well as the goodness of fit criteria R2 (first: unperturbed growth, second:
perturbed growth) are presented.
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6.7 Numerics

We solved the mono-therapy model (6.7)-(6.10) and the combination therapy model
(6.13)-(6.16) in ordinary differential equation formulation with the Matlab internal solver
ode45. The mono-therapy model (6.29)-(6.32) in delay differential equation formulation
was solved with the Matlab internal solver dde23.

The fitting process was performed with the procedure lsqcurvefit from the Matlab

Optimization Toolbox, where large- and medium-scale algorithms are applied. The gradi-
ent was calculated by variation equations (see e.g. [Ama95]) in case of ordinary differential
equations and solved numerically in case of delay differential equations. The weights are
W = I.

Also the PKPD software ADAPT (a Fortran based package) from the Biomedical Simula-
tions Resource (BMSR) in the Department of Biomedical Engineering at the University
of Southern California was used to fit data. ADAPT applies the Simplex Nelder-Mead al-
gorithm (gradient free method) for optimization and uses LSODA (solver with automatic
method switching for stiff and non-stiff problems) for solving ordinary differential equa-
tions, see [Pet84]. ADAPT was applied to the ordinary differential equation formulation
(6.7)-(6.10) and (6.13)-(6.16).

The results from Matlab and ADAPT coincide within numerical errors.

6.8 Project structure

The results from Section (6.1)-(6.5) were carried out together with coworkers from Ny-
comed (A Takeda Company) namely, Dr. A. Walz (Biologist) and Dr. G. Lahu (Head
of the Department Pharmacometrics), and Prof. Dr. J. Schropp from the University of
Konstanz. Dr. Walz contributed to this project with fundamental biological knowledge
in tumor growth. The results were published in the Journal of Pharmacokinetics and
Pharmacodynamics (JPKPD) in April 2009, see [KWLS09]. On the website of JPKPD
data and code is available for download. Section (6.1)-(6.5) were part of the collabora-
tion Numerical simulation of drug designing experiments (Project no. 735/06) between
Nycomed and the University of Konstanz.

Section 6.6 is part of the forthcoming publication [KS12] appearing in Spring 2012 in
JPKPD.

6.9 Discussion and outlook

To our knowledge, our combination therapy PKPD tumor growth model for data mea-
sured in xenograft mice was the first published in the PKPD community.

Our published manuscript [KWLS09] was already frequently cited, where the most notable
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citations are from P. Bonate and D. Howard [BD11] in the book "Pharmacokinetics in
Drug Development Volume 3: Advances and Applications" and the overview article from
Zhou et al [ZG11] named "The Pharmacokinetic/Pharmacodynamic Pipeline: Translating
Anticancer Drug Pharmacology to the Clinic".

However, due to the importance of combination therapy (especially in cancer develop-
ment) this field is subject of strong ongoing research, also in mathematical modeling.
Hence, several modeling approaches have been published in the last three years.

In 2009, Rocchetti and colleagues [RBG+09] published a model to test additivity of anti-
cancer agents. They proposed also a model with transit compartments but here every state
of dying cells is connected among each other. Their approach does not fit combination
therapy data and also does not quantify the effect of combination by an explicit param-
eter. Instead, the model simulates based on the parameter obtained from mono-therapy,
if the model prediction lies above or under the combination therapy data. They recom-
mend visual checks as well as statistical hypothesis testing to conclude for additive effects.

In 2010, Goteti and colleagues [GEGU+10] presented a PKPD tumor growth model with a
build-in synergistic term, especially designed to describe synergistic combination therapy
data.

In 2011, Frances et al [FCBI11] published a model for clinical trials to describe the in-
teraction between capecitabine and docetaxel used in combination in metastatic breast
cancer. This model structurally differs from our approach and the cited PKPD models
above.

Finally, we mention that the lifespan formulation (6.29)-(6.32) of our tumor growth model
for mono-therapy opens the route to a new combination therapy approach. In this new
approach not only the drug potencies kA

pot and kB
pot could be used to characterize drugs but

also the lifespan TA and TB of the attacked tumor cells by either drug A or B from mono-
therapy. Therefore, one would include more information of the drugs, which is actually
available but still not used, in a new combination therapy approach. The development
and application of such a model is currently ongoing.
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Chapter 7

Modeling of Arthritis and

Anti-GM-CSF Effects

Rheumatoid arthritis (RA) is an immune-mediated inflammatory disease and is character-
ized by a chronic inflammation and synovial hyperplasia leading to destruction of cartilage
and bone, see [FM98]. Approximately one percent from the world-wide population suffers
on RA. Interestingly, women are three times more affected than men. In most cases the
disease starts at an age between 40 and 50 years.

The cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) is a key acti-
vator of the innate part of the immune system and as such involved in chronic stages of
inflammatory and autoimmune diseases like RA, asthma or multiple sclerosis and GM-
CSF was found aberrantly overproduced in such diseases, compare [AGZB+91], [CPR+98]
and [GWJ03]. In arthritis, administration of recombinant GM-CSF for therapeutic pur-
poses was found to aggravate arthritis and is therefore, one of the potential main drivers,
see [VWB+91] and [BZHC00]. In experimental models of arthritis, inhibition of GM-CSF
reduces the intensity of the inflammation and thereby also lowers articular cartilage and
bone destruction, see [CBC+01] and [PZJH+07].

In this project the arthritis development in mice is observed. In our experiments col-
lagen induced arthritic (CIA) mice, which is a widely accepted model, are used. This
model shares several clinical, histopathological and immunological features with human
RA, see [HBBY02], [Wil04] and [BVT10]. The monoclonal antibody 22E9 was used in
order to neutralize the biological activity of murine GM-CSF in CIA mice.

In 2008, Earp and colleagues [EDM+08b], [EDM+08a] presented a mathematical model
for arthritis development in CIA rats. They measured and modeled different cytokines
and the paw size. To describe existing delays they used transit compartments.

In this project we develop a multi-response PKPD model to describe either a total arthritic
score as well as a ankylosis score. To capture existing delays we use delay differential equa-
tions.
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Experimental setup

In Section 7.1 we present the experimental setup. In Section 7.2 we develop the PKPD
model based on pharmacological assumptions with delay differential equations. In the
next Section 7.3 the fitting results are presented. In Section 7.4 we use the model as
example and apply the results from Section 4.4.

7.1 Experimental setup

The CIA mouse model (DBA/1 mice, Taconic Farms, 8-9 weeks old) consists of an arthritic
induction phase and an arthritic development phase. The arthritic induction phase starts
with an initial immunization with collagen. 21 days later a booster injection with collagen
is administered. The time point t = 0 is the day before the day of onset (t = 1) when
first signs of arthritis are detected, which is the start of the arthritic development phase.
Around 10 days later, also first signs of ankylosis, describing the bone and cartilage de-
struction in joints, is detected. See Figure 7.1 for a schematic overview of the CIA mouse
model. In the experiments two different scorings were performed in the CIA mouse model,
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Figure 7.1: Schematic overview of the CIA mouse model.

namely a discrete total arthritic score (TAS), which is a descriptive overall measurement
of the disease development and a discrete ankylosis score (AKS), representing bone and
cartilage destruction in the joints. The appearance of ankylosis was delayed to the first
sign of inflammation. The readout TAS consists of integers ranging from 0 to 4 for each
individual paw and hence a range of 0-16 per animal is possible. The readout AKS was
originally scored from 0-2 for each individual paw and results in a range of 0-8 per animal,
see Table 7.1. In order to achieve a consistent scoring scale between TAS and AKS we
multiplied the AKS scores by a factor 2. Both TAS and AKS are visual scores. In all
experiments the drug treatment was administered i.v. and the PK and the PD readouts
where measured in the same mice. In experiment A the PK was measured at 8 time
points per mouse and at the terminal bleed. In experiment B the PK was measured only
once per mouse and at the terminal bleed for all animals. The PD readouts were taken
every other day in both experiments. Table 7.1 shows the dosing schedule for the differ-
ent experiments. In experiment A and B some mice were found dead and were therefore
excluded from our analysis. Overall 82 mice were treated in the experiments with either
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Total Arthritic
Score (TAS)

Observation
Ankylosis
Score (AKS)

Observation

0 Normal Paw 0 No Ankylosis
1 One toe inflamed and swollen. 1 Mild Ankylosis

2
More than one toe, but not en-
tire paw, inflamed and swollen, or
mild swelling of entire paw.

2 Severe Ankylosis

3 Entire paw inflamed and swollen.

4

Very inflamed and swollen paw
or ankylosed paw. If the paw is
ankylosed, the mouse cannot grip
the wire top of the cage.

Table 7.1: The total arthritic score (TAS) and the ankylosis score (AKS).

Experiment A Experiment B

Placebo on day 1,8,15 Placebo on day 1,8,15
1 mg/kg on day 1,8,15 0.1 mg/kg on day 1,8,15
10 mg/kg on day 1,8,15 1 mg/kg on day 1,8,15
100 mg/kg on day 1,15 10 mg/kg on day 1,8,15

Table 7.2: Dosing schedules of monoclonal antibody 22E9 for experiment A and B.

vehicle or 22E9 and 72 were included in the analysis.

In experiment A a non-monotonic data behavior regarding dose and effect was observed.
In more detail the TAS and the AKS over time of the 10 mg/kg group laid above the 1
mg/kg group. On the other hand in experiment B the data showed a monotonic behavior.
This discrepancy might be explained by the intense blood sampling for PK analysis in
experiment A, which induced stress and possible infections to the animals thereby altering
the PD readout. Therefore, sparse PK sampling was applied in experiment B.

7.2 Model development

Starting point of the arthritis development is the inflammation I(t) driven by the cytokine
GM-CSF denoted by G(t). After a while the destruction of the joints starts as a result of
the existing inflammation and becomes more and more important. The bone destruction
D(t) is visualized by joint ankylosis. The underlying inflammation does not subside and
remains in a steady state as an important hallmark of the disease, see [Wil04]. The ad-
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ministered antibody 22E9 neutralizes the cytokine GM-CSF.

Thus the following assumptions were made:

(A1) The cytokine GM-CSF drives the inflammation and the cartilage and bone
destruction.

(A2) The arthritis starts with the inflammatory part which dominates the disease
for 1-2 weeks, afterwards inflammation decreases but does not vanish
completely and remains at a certain level.

(A3) The destructive part of the disease is delayed.

(A4) The antibody 22E9 directly acts on the cytokine GM-CSF.

The task to develop the full PKPD model is divided into three steps. Firstly, we present
an equation for the cytokine GM-CSF. Secondly, we model the responses TAS and AKS
based on the assumptions (A1)-(A3) and finally we include an effect term, which describes
the inhibition of GM-CSF in our model based on (A4).

Modeling Step 1: The cytokine behavior in time

Based on assumption (A1) the cytokine GM-CSF drives the disease. Hence, the first step
is to set up a model to describe the time course of GM-CSF. This is done with the use of
a classical inflow/outflow model. First, we consider the following coupled inflow/outflow
models

x′
1(t) = a1 − a2x1(t) , x1(0) = 0 (7.1)

x′
2(t) = a3 − a4x1(t)x2(t) , x2(0) = x0

2 ≥ 0 . (7.2)

We explicitly solve (7.1) and obtain the system

x′
2(t) = a3 − a4

a1

a2

(1 − exp(−a2t))x2(t) , x2(0) ≥ 0 . (7.3)

One immediately notices that the system (7.3) is over-parameterized because of the prod-
uct a4 · a1 and due to the fact that a4 and a1 do not appear elsewhere on the right hand
side of (7.3). Hence, we set k1 = a4a1, k2 = k2 and k3 = a3 and obtain the model

G′(t) = k3 −
k1

k2

(1 − exp(−k2t)) G(t) , G(0) ≥ 0 (7.4)

for the cytokine GM-CSF. The solution G(t) of (7.4) can realize either monotonic or non-
monotonic behavior in time, regarding to the actual values of the parameters k1, k2 and
k3. Earp and colleagues, see [EDM+08b] and [EDM+08b], measured different cytokines in
CIA rats which show monotone or non-monotone behavior. We could not measure GM-
CSF in plasma due to volume constraints in the CIA mice but expect the same qualitative
behavior as the cytokines measured by Earp et al.
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Modeling Step 2: Multi-response approach to model the TAS and AKS

In the next step towards a mathematical model the arthritic disease is split into an
inflammatory part I(t) and an ankylosis (bone and cartialge destruction) part D(t) and
the sum

R1(t) = I(t) + D(t) (7.5)

is defined as the response R1(t), which is fitted against the measured TAS. In addition
the second response function is defined as

R2(t) = D(t) (7.6)

which is fitted against the AKS data.

To build a model for the time course of the inflammation I(t) and the ankylosis D(t)
we adapt the concept of lifespan modeling introduced in Section 4.3. Similar to that
concept the overall inflammation I(t) is controlled by two processes, the inflow kin(t) and
the outflow kout(t). Assuming that the inflammation caused by these processes remains a
certain time period T and is driven by the amount of GM-CSF, one obtains

kout(t) = kin(t − T )

and
kin(t) = k4G(t)

where k4 > 0 is a first order rate constant. Then the total balance equation for the
inflammation reads

I ′(t) = kin(t) − kout(t) = k4G(t) − k4G(t − T ) . (7.7)

Finally, for the ankylosis D(t) one obtains based on the assumption (A1)-(A2)

kin(ankylosis) = kout(inflammation) .

Applying a first order loss term

kout(ankylosis) = k5D(t)

leads to the equation
D′(t) = k4G(t − T ) − k5D(t) . (7.8)

The presence of G(t) and G(t − T ) in (7.7) and (7.8), respectively, reflect that the in-
flammation and the ankylosis is driven by GM-CSF. Moreover, the action of GM-CSF in
respect to the ankylosis is delayed by T .

It is realistic to assume that an increase of GM-CSF already starts after the immu-
nization in the CIA model. Therefore, it is reasonable to take the initial function G0(s),
−T ≤ s ≤ 0 monotonic increasing. Furthermore, because the GM-CSF-producing cells
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divide and proliferate in response to the collagen immunization, it is realistic to assume
an exponential growth of the cytokine. The initial function is then of the form

G0(s) = a exp(bs) for − T ≤ s ≤ 0 , a, b > 0. (7.9)

Because the cytokine GM-CSF is modeled in a qualitative and not a quantitative manner
the parameter a and b in (7.9) will be fixed during the fitting process.

A consequence of the early start of the GM-CSF production described by (7.9) is that at
t = 0 already some weak inflammation exists, but is still scored with the value 0 in the
discrete TAS scheme by the experimenter. Therefore, the initial value of the inflammation
in (7.7) is set to I(0) = I0 > 0. Finally, the model equations (7.4),(7.7)-(7.8) completed
by the initial conditions (7.9), I(0) = I0 > 0 and D(0) = 0 describe the unperturbed
arthritis development.

Modeling Step 3: The final PKPD model with the influence of the antibody
22E9 at the cytokine GM-CSF

The antibody 22E9 acts directly on the cytokine GM-CSF G(t), see (A4). Thus it is
obvious that equation (7.4) has to be amended by an effect term to obtain a PKPD
model. In experiment A and B different dose levels were administered. It turned out in
our experiments that the effect of the drug is highly non-linear in respect to the amount of
dose. Sometimes it was observed that the effect is not even monotonic regarding to dose-
effect relationship. Therefore, we apply the drug-effect term (4.79) derived in Chapter 4.6.

The final PKPD model

The final PKPD model for unperturbed and perturbed arthritis development in CIA
mice reads

G′(t) = k3 − (σ1 exp(−σ2c(t)) + σ3) c(t)G(t) G(s) = a exp(bs) (7.10)

−k1

k2

(1 − exp(−k2t)) G(t) , for 0 ≥ s ≥ −T

I ′(t) = k4G(t) − k4G(t − T ) , I(0) = I0 > 0 (7.11)

D′(t) = k4G(t − T ) − k5D(t) , D(0) = 0 (7.12)

R1(t) = I(t) + D(t) (7.13)

R2(t) = D(t) (7.14)

with the model parameters

θ = (k1, k2, k3, k4, k5, T, I0, a, b, σ1, σ2, σ3) . (7.15)

Hence, the final model consists of three meaningful compartments, namely GM-CSF,
inflammation and ankylosis. In Figure 7.2 a basic diagram of the model (7.10)-(7.14) is
presented. Note that (7.10)-(7.12) is structurally similar to model II (4.53)-(4.55) from
Section 4.5.

96



Model development

5k4k

���������� ���� ¡ ¢£¢�¤¥� ¦§¨
)(tG )(tI )(tD

)(tG )( TtG −

)(tc
)()()(1 tDtItR +=

)()(2 tDtR =

©ª«¬­® ¯°±²³´´³µ¶·° ¸°¹º²·»¶»
¸°µ¶¼·½º ¾·°¾¿ ���� ¡ ¢£¢�¤¥� §À¨

4
2

1 k
k

k ≈
3k

)(tD

Figure 7.2: Schematic overview of the PKPD model (7.10)-(7.14).

Proposition 7.2.1
The steady state of (7.10)-(7.12) reads

G∗ =
k3k2

k1

, I∗ = I0 + k4TG∗ − k4a

b
(1 − exp(−bT )) and D∗ =

k4

k5

G∗.

Proof: Because lim
t→∞

c(t) = 0 we obtain for Eq. (7.10)

0 = k3 −
k1

k2

G∗ ⇒ G∗ =
k3k2

k1

. (7.16)

The solution of (7.11) is of the form

I(t) = k4

t∫

0

G(τ) − G(τ − T )dτ + I0 = k4




t∫

0

G(τ)dτ −
t∫

0

G(τ − T )dτ


 + I0

= k4




t∫

0

G(τ)dτ −
t−T∫

−T

G(z)dz


 + I0 . (7.17)

Because G(t) is defined for t ≤ 0 we could split the integrals in (7.17) and obtain

(7.18)

I(t) = k4




t−T∫

0

G(τ)dτ +

t∫

t−T

G(τ)dτ −
0∫

−T

G(τ)dτ −
t−T∫

0

G(τ)dτ


 + I0

= k4




t∫

t−T

G(τ)dτ −
0∫

−T

G(τ)dτ


 + I0 . (7.19)

Then using lim
t→∞

G(t) = G∗ we have

lim
t→∞

t∫

t−T

G(τ)dτ = TG∗ .
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Therefore,

I∗ = lim
t→∞

I(t) = k4TG∗ − k4

0∫

−T

G0(τ)dτ + I0 (7.20)

and with G0(s) = a exp(bs) for s ≤ 0 we obtain

0∫

−T

G0(τ)dτ =

0∫

−T

a exp(bτ)dτ =
a

b
(1 − exp(−bT )) (7.21)

leading to

I∗ = k4TG∗ − k4
a

b
(1 − exp(−bT )) + I0 . (7.22)

Finally, using (7.12) we immediately obtain

0 = k4G
∗ − k5D

∗ =⇒ D∗ =
k4

k5

G∗ . (7.23)

Hence, the steady states of (7.10)-(7.12) are (7.16), (7.22) and (7.23).
¤

Finally, we reformulate the DDE (7.10)-(7.12) as ordinary differential equation. Due
to the special structure of the model the method of steps (see for example [Dri77]) re-
duces to exactly two steps. We formulate the DDE (7.10)-(7.12) slightly more general
and denote by g(c(t)) an arbitrary effect term and by h(t) an initial function. The model
then reads

y′
1(t) = k3 − g(c(t))y1(t) −

k1

k2

(1 − exp(−k2t)) y1(t) , y1(s) = h(s) (7.24)

for s ∈ [−T, 0]

y′
2(t) = k4y1(t) − k4y1(t − T ) , y2(0) = y0

2 (7.25)

y′
3(t) = k4y1(t − T ) − k5y3(t) , y3(0) = 0 . (7.26)

The first step is to substitute the initial function h(s) for y1(t − T ) into the right hand
side of (7.24)-(7.26). Hence, we obtain the following ODE system for 0 ≤ t ≤ T

x′
1(t) = k3 − g(c(t))x1(t) −

k1

k2

(1 − exp(−k2t)) x1(t) , x1(0) = h(0) (7.27)

x′
2(t) = k4x1(t) − k4h(t − T ) , x2(0) = x0

2 (7.28)

x′
3(t) = k4h(t − T ) − k5x3(t) , x3(0) = 0 . (7.29)

Let (xT
1 , xT

2 , xT
3 ) = (x1(T ), x2(T ), x3(T )) be the solution of (7.27)-(7.29) for the time point

t = T . By adding an additional ordinary differential equation with the property x4(t) =
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x1(t − T ) for all t ≥ T we obtain the system

x′
1(t) = k3 − g(c(t))x1(t) −

k1

k2

(1 − exp(−k2t)) x1(t) , x1(T ) = xT
1 (7.30)

x′
2(t) = k4x1(t) − k4x4(t) , x2(T ) = xT

2 (7.31)

x′
3(t) = k4x4(t) − k5x3(t) , x3(T ) = xT

3 (7.32)

x′
4(t) = k3 − g(c(t − T ))x4(t)

−k1

k2

(1 − exp(−k2(t − T ))) x4(t) , x4(T ) = x0
1 = h(0) (7.33)

for all t ≥ T .

Hence, the ODE formulation of the DDE (7.24)-(7.26) is (7.27)-(7.29) for 0 ≤ t ≤ T
and (7.30)-(7.33) for t ≥ T .

7.3 Fitting results

We simultaneously fitted in experiment A and in experiment B all available dosing groups.
To describe the results of the experiments A and B four outputs are created, the fit of
the TAS data (left upper panel), the fit of the AKS data (right upper panel) as well as
the prediction of the qualitative behavior of GM-CSF (left lower panel) and of the inflam-
mation (right lower panel). The bars denote the standard deviation, calculated from the
individual data.

In Figure 7.3 the results for experiment A are presented. Here we have the non-monotonic
dose-effect relationship, more precisely, the 1 mg/kg group shows a higher effect than the
10 mg/kg group. In Figure 7.4 the results for experiment B are presented. The bars
denote the standard deviation calculated on the basis of the individual data. For both
experiments the developed PKPD model describes the data adequately. Also our simu-
lations of GM-CSF (see Figure 7.3 and 7.4) show the same qualitative behavior as the
cytokines measured by Earp et al [EDM+08b],[EDM+08a]. In Table 7.3 the estimates of
the parameters are presented. In both experiments the delay parameter T has the lowest
coefficient of variation compared to all other parameters. This shows the stability of the
estimate of the delay T . Also the actual estimates of T completely coincide with the
situation seen in the data.
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Figure 7.3: Experiment A: Note that in this experiment the effect of the 1 mg/kg is higher
than the effect of 10 mg/kg. The red diamonds denote the vehicle group, the blue open
circles denote the 10 mg/kg group, the black open squares denote the 1 mg/kg group and
the green filled squares denote the 100 mg/kg group. The left and right upper panel show
the fits of the total arthritic score and the ankylosis score, respectively. In the left lower
panel the qualitative behavior of the GM-CSF is presented and in the right lower panel the
inflammation is plotted.
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Figure 7.4: Experiment B: The red diamonds denote the vehicle group, the black filled
circles denote the 0.1 mg/kg group, the blue open squares denote the 1 mg/kg group and
the green open circles denote the 10 mg/kg group. The panels are defined as in Figure
7.3.
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lts
Parameter Explanation Experiment A Experiment B

Value (CV%) CI Value (CV%) CI

k1 Outflow GM-CSF 0.183 (32) [0.065, 0.302] 0.456 (42) [0.079, 0.832]
k2 Outflow GM-CSF 0.092 (26) [0.045, 0.140] 0.169 (25) [0.085, 0.252]
k+

3 Inflow GM-CSF 5 5

k4
Inflow/Outflow Inflammation;
Inflow Ankylosis

0.064 (23) [0.034, 0.093] 0.185 (30) [0.076, 0.292]

k5 Outflow Ankylosis 0.016 (26) [0.008, 0.021] 0.031 (21) [0.018, 0.044]
σ1 Effect term parameter 0.154 (44) [0.019, 0.289] 0.328 (41) [0.063, 0.593]
σ2 Effect term parameter 0.065 (39) [0.014, 0.116] 0.328 (25) [0.165, 0.491]
σ3 Effect term parameter 0.003 (23) [0.002, 0.005] 0.025 (35) [0.008, 0.042]
T Delay Ankylosis 11.2 (4.4) [10.24, 12.21] 10.6 (4.3) [9.688, 11.48]
I0 Initial value Inflammation 2.52 (5.4) [2.24, 2.79] 2.83 (8.5) [2.35, 3.31]
a+ Initial function parameter GM-CSF 1 1
b+ Initial function parameter GM-CSF 0.5 0.5

Sum of squares 21.15 23.72
R2 for R1(t) 0.99 / 0.98 / 0.87 / 0.91 0.94 / 0.96 / 0.99 / 0.73
R2 for R2(t) 0.99 / 0.96 / 0.98 / 0.82 0.99 / 0.99 / 0.99 / 0.90

Table 7.3: PKPD model parameters of (7.10)-(7.14). Parameters denoted by superscript + were fixed during the fitting process.
Model parameter estimates, coefficient of variation, 95%-confidence interval and R2 of the simultaneous fit are presented.
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7.4 Reformulation as transit compartment based model

In this section we apply Theorem 4.4.1 from Section 4.4 and rewrite the model (7.10) -
(7.14) as a transit compartment model.

The inflammation (see (7.11)) in the arthritis model is governed by an LSM with in-
put

kin(t) = k4 · G(t)

On the way towards a TCM realization of the model we replace the lifespan equation
(7.11) by a TCM with n states and obtain

x′
1(t) = k4 · G(t) − k · x1(t) (7.34)

x′
2(t) = k · x1(t) − k · x2(t) (7.35)

...

x′
n(t) = k · xn−1(t) − k · xn(t) (7.36)

completed by the initial values

xi(0) =
1

k
· f

(
i

n

)
, i = 1, ..., n , k =

n

T
. (7.37)

According to equation (4.29) the initial density function f is based on the past G(s),
−T ≤ s ≤ 0 that is

f(t) = kin(−Tt) = k4 · G(−Tt) = k4 · a exp(−bT t) for 0 ≤ t ≤ 1 .

Finally, as a consequence we eliminate the term k4 ·G(t−T ) from equation (7.12) as well
as I(t) from (7.13) and obtain by the use of (4.25) and (4.28)

G′(t) = k3 − (σ1 exp(−σ2c(t)) + σ3) c(t)G(t) , G(0) = a (7.38)

− k1

k2

(1 − exp(−k2t)) G(t)

x′
1(t) = k4G(t) − kx1(t) , x1(0) =

1

k
f

(
1

n

)
(7.39)

x′
2(t) = kx1(t) − kx2(t) , x2(0) =

1

k
f

(
2

n

)
(7.40)

...

x′
n(t) = kxn−1(t) − kxn(t) , xn(0) =

1

k
f (1) (7.41)

D′(t) = kxn(t) − k5D(t) , D(0) = 0 (7.42)

R1(t) = x1(t) + · · · + xn(t) + D(t) (7.43)

R2(t) = D(t) (7.44)

with the model parameter

θ2 = (k1, k2, k
+
3 , k4, k5, a

+, b+, σ1, σ2, σ3, k) . (7.45)
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A short look on the list of parameters (see (7.15) and (7.45)) shows that there is a difference
between the arthritis model in LSM and TCM formulation. Equations (7.10)-(7.14) make
sense for the initial condition I(0) = I0 with I0 > 0 arbitrary. But the TCM arthritis
equations (7.38)-(7.44) converge in the limit n → ∞ towards the LSM model (7.10)-(7.14)
with I0 fixed according to

I0 = T

1∫

0

f(s) ds = T

1∫

0

k4a exp(−bTs) ds =
k4a

b
(1 − exp(−bT )) (7.46)

(see 4.30) to which the LSM realization is really equivalent to.

Nevertheless, to demonstrate the potential of the TCM formulation even with one pa-
rameter less we fix the number of compartments to n = 5 and fit the parameters (7.45)
with the data from experiment B, see Figure 7.4. The estimates of the parameter are
listed in Table 7.4. Note that the significant difference in the parameter estimates is due
to two reasons. First, the original arthritis model in LSM formulation consists of an addi-
tional fitting parameter I0. Second, the arthritis model in TCM formulation is also from
the pharmacological point of view a different model. In the original model the drug acts
not until time T on the ankylosis, whereas this is not the case in the TCM formulation.

Parameter Explanation Experiment B
Value (CV%) CI

k1 Outflow GM-CSF 1.608 (19) [1.011, 2.204]
k2 Outflow GM-CSF 0.131 (23) [0.069, 0.192]
k+

3 Inflow GM-CSF 5

k4
Inflow/Outflow Inflammation;
Inflow Ankylosis

0.746 (12) [0.567, 0.926]

k5 Outflow Ankylosis 0.035 (22) [0.020, 0.05]
σ1 Effect term parameter 0.884 (33) [0.303, 1.465]
σ2 Effect term parameter 0.307 (26) [0.148, 0.488]
σ3 Effect term parameter 0.066 (26) [0.032, 0.100]
k Transit rate 0.329 (3.7) [0.305, 0.353]
a+ Initial function parameter GM-CSF 1
b+ Initial function parameter GM-CSF 0.5

Sum of Squares 30.07
R2 for R1(t) 0.97 / 0.96 / 0.99 / 0.76
R2 for R2(t) 0.96 / 0.98 / 0.97 / 0.92

Table 7.4: PKPD model parameters of the TCM formulation (7.38)-(7.44). Parameters
denoted by superscript + were fixed during the fitting process. Model parameter estimates,
coefficient of variation, 95%-confidence interval and R2 of the simultaneous fit are pre-
sented.
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Figure 7.5: Experiment B: TCM formulation (7.38)-(7.44).

7.5 Numerics

We solved the arthritis model in DDE formulation (7.10)-(7.12) by the Matlab solver
dde23 and the ODE formulation (7.27)-(7.33) and (7.38)-(7.44) with the Matlab solver
ode45.

The fitting process was performed with the procedure lsqcurvefit from the Matlab

Optimization Toolbox where large- and medium-scale algorithms were applied. The gra-
dient was calculated numerically. The weights are W = I.

We also applied the PKPD software ADAPT which is a Fortran based package from the
Biomedical Simulations Resource (BMSR) in the Department of Biomedical Engineering
at the University of Southern California to the ODE formulation (7.27)-(7.33) and (7.38)-
(7.44), see [DSW09]. ADAPT applies the Simplex Nelder-Mead algorithm for optimization
and uses LSODA (solver with automatic method switching for stiff and non-stiff prob-
lems) for solving ordinary differential equations, see [Pet84].

The results from Matlab and ADAPT coincide within numerical errors.

7.6 Project structure

The results from Section (7.1)-(7.3) were carried out together with coworkers from Ny-
comed (A Takeda Company) namely, Dr. T. Wagner (Chemist) and Dr. G. Lahu (Head
of the Department Pharmacometrics), from Micromet namely, Dr. C. Plater-Zyberk and
Prof. Dr. J. Schropp from the University of Konstanz. Dr. Wagner supported the project
with his pharmacological knowledge. Dr. Plater-Zyberk has more than 25 years experi-
ence in arthritis development in mice and contributed with her biological knowledge to
formulate the model assumptions (A1)-(A4).
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Sections (7.1)-(7.3) were published in the Journal of Pharmacokinetics and Pharmacody-
namics (JPKPD) in Janury 2012, see [KWPZ+12]. On the website of JPKPD all data
is available for download. Sections (7.1)-(7.3) were part of the collaboration Numerical
simulation of drug designing experiments (Project no. 735/06) between Nycomed and the
University of Konstanz.

Section 7.4 is part of the forthcoming publication [KS12] appearing in Spring 2012 in
JPKPD.

7.7 Discussion and outlook

To our knowledge, the model from Earp et al, see [EDM+08b]-[EDM+08a], for CIA
data to handle cytokines as well as paw swelling from 2009 was the first mathemati-
cal PKPD model for arthritis development. In this model, transit compartments with
n ∈ {19, 24, 29} where applied to account for delays.

In our experiments, the readouts TAS and AKS are visual scores. But our model also
simulates the qualitative behavior of the cytokine (could not be measured in mice) as well
as the inflammation (part of the TAS score) of the paws. We identified the inflammation
as a population and applied the lifespan approach. Therefore, our model consists of just
three differential equations.

We remark that the CIA mouse model with the two performed readouts is the perfect
example for the use of delay differential equations. First, it exists an important past of
the cytokines (arthritis induction phase) before the first measurements. This is modeled
by the initial function which is described by a realistic exponential approach. Second, the
strongly delayed appearance of the ankylosis driven by the cytokines is perfectly imple-
mented by a lifespan approach.

Moreover, to our knowledge our presented model is the first which describes simulta-
neously the total arthritis disease as well as the bone and cartilage destruction (which is
an important property of the disease).
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Appendix A

Laplace transform

The Laplace transform (see [Wid66] or [Doe76]) is an important tool to analytically solve
linear ordinary differential equations.

A function f(t) living in the so-called time domain is transformed by the Laplace trans-
form (integral transformation) into the so-called image domain. In the image domain, the
transformed function could be easier treated. Finally, the modified object from the image
domain is transformed back to the time domain.

Definition A.0.1 (Laplace transform)
Let f : [0,∞) → C. The Laplace transform of f(t) is defined by

F (s) = L{f(t)} = L{f}(s) =

∞∫

0

exp(−st)f(t) dt

where s ∈ C.

The Laplace transform in the image domain is linear

L{af(t) + bg(t)} = aL{f(t)} + bL{g(t)}.

Proposition A.0.2 (Existence of the Laplace transform)
Let f : [0,∞) → C and C > 0, s0 > 0. Further it exists a T > 0 with

|f(t)| ≤ C exp(s0t) for t > T .

If also
T∫

0

|f(t)|dt ≤ ∞

then the Laplace transform L{f}(s) exists in the half-plane Re(s) > s0.
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Definition A.0.3 (Inverse Laplace transform)

f(t) = L−1{F (s)} =
1

2πi

γ+i∞∫

γ−i∞

exp(st)F (s)ds

where γ is a real number so that the contour path of integration is in the region of con-
vergence of F (s).

Proposition A.0.4 (Uniqueness - Lerch’s theorem)
If the Laplace transforms of f and g exists and if L{f(t)}(s) = L{g(t)}(s) for all s with
sufficient large real part, then

f(t) = g(t)

in every t, where both functions are continuous.

Theorem A.0.5 (Heaviside’s theorem)
Let

p(s) =
m∑

i=1

bis
i and q(s) =

n∑

i=1

ais
i

be polynomials with s ∈ C. Further let m < n and q(s) has distinct roots λi for i = 1, ..., n.
Then

L−1

{
p(s)

q(s)

}
=

n∑

i=1

p(λi)

q′(λi)
exp(λit) .

Proposition A.0.6 (Transform table)
a.) L{f ′(t)} = s · L{f(t)} − f(0)
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Appendix B

Pharmacokinetic parameters of anticancer drugs

Parameter Unit
Drug A2
120mg/kg

Drug B
100 mg/kg

Drug A1
120 mg/kg

Drug A1
180 mg/kg

Drug C
100 mg/kg

Drug C
150 mg/kg

Value (CV%) Value (CV%) Value (CV%) Value Value (CV%) Value

ka [1/h] 5.54 (40.4) 104 (>100) 4.42 (45.8) 4.42 84.9 (>100) 84.9
k [1/h] 0.155 (30.0) 0.105 (36.5)
V1 [L/kg] 1.52 (10.7) 2.79 (>100)
Aoral [mg/L] 77.2 (100) 116 16.9 (25.0) 25.3
Boral [mg/L] 7.45 (41.3) 11.2 26.9 (>100) 40.4
α [1/h] 3.11 (59.3) 3.11 0.170 (39.0) 0.170
β [1/h] 0.663 (21.2) 0.663 4.96 (>100) 4.96

Table B.1: Pharmacokinetic parameters in macro constant parameterization for different anticancer drugs. Drug A2 and B was
fitted with a one-compartment model c(t) = kadose

(ka−k)V1

(exp(−kt) − exp(kat)) and drug A1 and C with a two-compartment model

c(t) = Aoral exp(−αt) + Boral exp(−βt) − (Aoral + Boral) exp(−kt). Drug A1 180 mg/kg was predicted from 120 mg/kg and drug
C 150 mg/kg was predicted from 100 mg/kg.
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