Fachbereich Mathematik und Statistik

Übungen zur Mathematik für Biologen und Sportwissenschaftler Blatt 8

Aufgabe 29 (schriftlich)

a) Berechnen Sie die 2. Ableitung der folgenden Funktionen:

(1)
$$x(t) = \ln(2t+1), \quad t > -\frac{1}{2}$$

(2)
$$f(x) = \exp(-x^2), \quad x \in \mathbb{R}$$

(3)
$$h(y) = (2y^2 + 3)^5, y \in \mathbb{R}$$

b) Finden Sie eine allgemeine Formel für die n-te Ableitung von $x(t) = \ln(2t+1)$.

Aufgabe 30 (schriftlich)

Erstellen Sie ein qualitatives Schaubild von der Funktion

$$f(x) = \frac{20}{4 + 4\exp(2 - 3x)} ,$$

in dem Sie folgende Punkte untersuchen:

- (1) Nullstellen,
- (2) Verhalten für $x \to \infty$ und für $x \to -\infty$,
- (3) strenge Monotonie,
- (4) Krümmungsverhalten und Wendepunkte.

Aufgabe 31 (mündlich)

Berechnen Sie x' für

$$\mathbf{a)} \quad x(t) = \sqrt{t} + \exp\left(\sqrt{t}\right),$$

be recinion Sie
$$x$$
 fur
a) $x(t) = \sqrt{t} + \exp\left(\sqrt{t}\right)$, **b)** $x(t) = \ln\left(\frac{3t^3 + 2t + 1}{2t}\right)$, $t > 0$,
c) $x(t) = \frac{2t^2 - 1}{t + 1}$, $t \neq -1$, **d)** $x(t) = \sqrt{\exp(t^2) + 2}$, **e)** $x(t) = t^{\alpha} \ (\alpha \in \mathbb{R})$.

c)
$$x(t) = \frac{2t^2 - 1}{t + 1}, \quad t \neq -1$$

d)
$$x(t) = \sqrt{\exp(t^2) + 2}$$
, e)

Aufgabe 32 (mündlich)

Sei $f:[0,2]\to\mathbb{R}$ eine zweimal differenzierbare Funktion mit folgenden Eigenschaften:

(1)
$$f(1) = 0$$

(2)
$$f'(t)<0$$
 für alle $t\in[0,2]$

(3)
$$f''(t) > 0$$
 für $t \in [0,1)$ und $f''(t) < 0$ für $t \in (1,2]$

- a) Hat diese Funktion einen Wendepunkt? Geben Sie diesen gegebenenfalls an.
- b) Hat diese Funktion einen Sattelpunkt? Geben Sie diesen gegebenenfalls an.
- c) Skizzieren Sie diese Funktion.

Besprechung: ab 17. Dezember 2018 in den Übungen.