Exercises for Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/mechelli/teaching.html

Exercise Sheet 7

Submission¹: 21st December at 10:00

Exercise 1. (Theory, 10 points)

Let $y \in C^1([0,T],\mathbb{R})$ and consider the following autonomous Cauchy Problem:

$$\begin{cases} \dot{y}(t) = f(y(t))\\ y(0) = y_0 \end{cases}$$
(1)

with $f : \mathbb{R} \to \mathbb{R}$ a Lipschitz continuous function.

Derive the order of consistency, and thus of convergence, of Explicit Euler, Implicit Euler, Heun² and Crank-Nicolson numerical schemes. (For simplicity, you can assume $y \in C^{\infty}([0,T],\mathbb{R})$ and $f \in C^{\infty}(\mathbb{R})$.)

Exercise 2. (Programming, 10 points)

Let consider a time interval $[0,T] \subset \mathbb{R}$ with T > 0. Let $y_i \in C^1([0,T],\mathbb{R})$ for $i = 1, \ldots, N-1$ $(N \in \mathbb{N})$. Consider the following system of linear ODEs:

$$\begin{cases} \dot{y} = Ay\\ y_i(0) = \sin(\frac{i\pi}{N}) \end{cases}$$
(2)

where $y = (y_1, \ldots, y_{N-1}), N \ge 20$ and $A \in \mathbb{R}^{(N-1) \times (N-1)}$ is a matrix with the following structure:

$$A_{ij} = \begin{cases} -2N^2 & \text{if } i = j \\ N^2 & \text{if } |i - j| = 1 \\ 0 & \text{otherwise} \end{cases}$$
(3)

Solve (2) numerically by implementing the Explicit Euler, Implicit Euler, Heun and Crank-Nicolson methods. Your codes have to be structured in the following way:

- 1. Each method has to be implemented separately as a function Method_name(t, Δ t,A,y0), where t is the time discretization vector representing [0, T] according to the time step Δt and y0 is the vector containing the information of y at time 0. The function Method_name(t, Δ t,A,y0) has to give in output the numerical solution y of the system (2) as a matrix, which has as *i*-th row the vector containing the values at every discrete time of y_i .
- 2. In your main file main_7.m, for each method, verify the order of convergence respect to the maximum norm, plotting the decay of the error between the exact³ and the approximated solution⁴. As last, fix a time step Δt and plot⁵ at each discrete time the vector solution $y(t) = (y_1(t), \ldots, y_{N-1}(t))$, computed with the method you prefer most.

Discuss in your report the order of convergence of each method, reporting and plotting the average error e_N for different values of Δt .

¹The Theory Exercises will be collected at the begin of the lecture. The Programming Exercises (including the report) has to be sent by email to luca.mechelli@uni-konstanz.de (group of Tuesday) and to hai.nguyen-pham@uni-konstanz.de (group of Wednesday) before the submission's deadline.

 $[\]frac{2}{2}y^{k+1} = y^k + \frac{\Delta t}{2}(f(y^k) + f(y^k + \Delta t f(y^k))), \text{ with } y^k = y(t^k) = y(k\Delta t) \text{ and } \Delta t > 0 \text{ a discretization's time step.}$

³How does the exact solution for a system of linear ODEs look like?

⁴Hint: the order of convergence is verified for the approximation of each y_i . Since we have a linear system of ODEs, a way to verify the order of convergence is to consider the average error $e_N = (N-1)^{-1} \sum_{i=1}^{N-1} ||y_i - y_i^{exact}||_{\infty}$.

⁵All the vectors y(t) should be plotted in the same figure.