
University of Konstanz Winter Semester 2017/2018
Department Mathematics and Statistics
L. Mechelli, J. Lu, Prof. Dr. S. Volkwein

Exercises for
Theory and Numerics of Partial Differential Equations

http://www.math.uni-konstanz.de/numerik/personen/mechelli/teaching.html

Exercise Sheet 9

Submission1: 18th January at 10:00

Exercise 1. (Theory, 10 points)
Consider the following Boundary Value Problem:

−∆u = f on Ω,
u = g on Γ1,
∂u
∂n = 0 on Γ2

(1)

where Ω is a bounded domain of R2 with boundary ∂Ω = Γ1 ∪ Γ2, g ∈ C2(Γ1) and f ∈ C(Ω). Moreover, let

Dψ =
{
u ∈ C(Ω)|u = ψ on Γ1

}
and consider u ∈ C2(Ω) ∩Dg.
Prove the equivalence of these three following statements:

i) u is a stationary point of the functional I : Vg → R,

I(u) =

∫
Ω

(
1

2
|∇u|2 − fu

)
dxdy

where Vg = H1(Ω) ∩Dg

ii) u = u ∈ Vg satisfies ∫
Ω

(∇u · ∇v − fv) dxdy = 0

for all v ∈ V0

iii) u solves the Boundary Value Problem (1)

Hints:

1. For proving the equivalence ”i)⇔ii)” compute

∂

∂ε
I(u+ εv)

∣∣∣∣
ε=0

2. For v ∈ H2(Ω) and w ∈ H1(Ω) holds:∫
Ω

∇v · ∇wdxdy = −
∫

Ω

∆vwdxdy +

∫
∂Ω

∂v

∂n
wdS,

where n is the outward-pointing unit normal of Ω. This generalized Green formula for H1 function has
not to be proved and can be used in the exercise.

Exercise 2. (Programming, 6 points)
In this exercise, you are supposed to download on the above url the correct compute fd grid of Exercise 8.4 and
modify it, in order to include some indexing which will become important in later programs. This means that
your function should after this exercise return some lists in addition to the ones it has computed in Exercise
8.4. In order to illustrate this exercise in detail, consider the following simple grid as an example:

1The Theory Exercises will be collected at the begin of the lecture. The Programming Exercises have to be sent by email to
luca.mechelli@uni-konstanz.de (group of Tuesday) and to hai.nguyen-pham@uni-konstanz.de (group of Wednesday) before the
submission’s deadline.

1

http://www.math.uni-konstanz.de/numerik/personen/mechelli/teaching.html

13 14 15

10 11 12

7 8 9

4 5 6

1 2 3

12 13

9 10 11

6 7 8

3 4 5

1 2

Table 1: Example grid with rectangle point indices (left) and domain point indices (right). This example is
constructed in the main 9 2.m file by the name grid0

i. After the computation of grid.X1, grid.X2, grid.Nodes List and grid.Num Nodes for the rectangle
[a1, b1] × [a2, b2] in Exercise 8.4 and, thus, before the elimination phase (part iv. of Exercise 8.4), create
two lists grid.listX2P and grid.listP2X mapping the indices of the rectangle grid points between the
X1&X2-indexing and the grid.Num Nodes-indexing. For the example grid above, this would look like this:

listX2P =

 1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

 listP2X =

[
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

]
(Hint: the command repmat and reshape could be useful).

ii. Using the above list, create a list grid.neighbours such that grid.neighbours(:,i) contains the rect-
angle indices of the neighbours of the i-th rectangle point in the order west, east, north and south. If the
neighbour does not exist, fill in 0. In the above example, this would yield

neighbours =


0 1 2 0 4 5 0 7 8 0 10 11 0 13 14
2 3 0 5 6 0 8 9 0 11 12 0 14 15 0
4 5 6 7 8 9 10 11 12 13 14 15 0 0 0
0 0 0 1 2 3 4 5 6 7 8 9 10 11 12


iii. During the elimination phase (part iv.) of Exercise 8.4, remove the grid points also in grid.neighbours,

grid.listX2P and grid.listP2X. Then, transform the indexing of the nodes according to the new order.
(Compare black rectangle point indexing and blue domain indexing in Table 1). Adapt to this new indexes
grid.neighbours, grid.listX2P and grid.listP2X. In the above example, this should result in

neighbours =


0 0 0 3 4 0 6 7 0 9 10 0 0
0 0 4 5 0 7 8 0 10 11 0 0 0
3 5 6 7 8 9 10 11 12 0 13 0 0
0 0 1 0 2 3 4 5 6 7 8 9 11



listX2P =

 1 3 6 9 12
0 4 7 10 0
2 5 8 11 13

 listP2X =

[
1 3 1 2 3 1 2 3 1 2 3 1 3
1 1 2 2 2 3 3 3 4 4 4 5 5

]

iv. Identify the boundary points in the grid. A boundary point is defined as a point that does not have all
four neighbours. Store the information again in two lists grid.listB2P, containing the indexes of the
boundary points, and grid.listP2B, that has a 1 if the point in the i-th position is a boundary point or
a 0 otherwise. These two lists would take the following form in the example:

listB2P =
[
1 2 3 4 5 6 8 9 10 11 12 13

]
, listP2B =

[
1 1 1 1 1 1 0 1 1 1 1 1 1

]
(Hint: the command all and find could be useful).

After this exercise, your function compute fd grid, in comparison the the one of Exercise 8.4, should also add
the following fields to the output variable grid: listX2P, listP2X, neighbours, listP2B and listB2P. Test
your function by calling the script main 9 2.

Exercise 3. (Programming, 4 points)
In this exercise, you are supposed to write a function that build the linear system generated by the 5-Point
Finite Difference Scheme for the Laplace equation:

2

{
−∆u = f on Ω
u = g on ∂Ω

with Ω ⊂ R2. The function is called in the given main 9 3 in the following way:

[A,b] = build linear system(grid,f,g)

As you can see, build linear system takes three arguments:

1. grid is the structure generated using the function compute fd grid from Exercise 9.2

2. f and g belong to the class function handle and return, respectively, the value of fij = f(x1(i),x2(j))

and gij = g(x1(i),x2(j)), where (x1(i),x2(j)) is a node of the grid.

and gives as outputs A and b, which are, respectively, the matrix and the right-hand side of the linear system.
Test your function with the two examples contained in main 9 3:

1. Rectangular Domain:
Ω = [0, 1]× [0, 1]

f(x1, x2) = 8π2 sin(2πx1) cos(2πx2)

g(x1, x2) = sin(2πx1) cos(2πx2)

2. Elliptic Domain:

Ω =

{
(x1, x2) ∈ R2,

x2
1

4
+

(x2 − 5)2

9
≤ 1

}
f(x1, x2) = f̂(z) = π2 sin(2πz)− 13

9
π cos(2πz) with z =

x2
1

4
+

(x2 − 5)2

9

g(x1, x2) = 0

3

