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1 Introduction

One of the projects at the Fraunhofer ITWM is the development
of a software package, ParPac, whose purpose focuses on the si-
mulation of filling casting molds. The core routine is a solver of
the incompressible Navier-Stokes equation

du+u-Vu = —Vp+rvAu
diva =0
initial condition:  ul=¢ =ug
boundary condition:  ulsg =...

describing the motion of fluids inside a flow domain €. The
velocity field u and the kinematic pressure p are unknown
functions of time and space. v denotes the kinematic viscosity
as the only material parameter entering this model.

ParPac is based on the Lattice-Boltzmann method (LBM).
Unlike FEM and FVM the primary unknowns are not the
physical quantities but model variables, which are interpreted
as particle densities or particle populati

Adaptivity has turned out as a useful technique in order to
make standard methods more efficient. The idea is to refine the
discretization only locally in subregions with large numerical
error or fine structured geometry.

The classical LBM works with a quadratic or cubic grid. In
contrast to unstructured grids a local refinement is not possible.
Alternatively, one can try to couple grids with different spacings.

On this poster we present some of our preliminary results of
how to deal with adaptivity for the LBM, i.e. the problem of
grid coupling and error estimating.

2 The LB Method
Consider the Boltzmann equation for the particle distribution
function f: T x Q x R® — R with f = f(t,x,v)

of +v-Vxf=Q(f.f)

Linearize collision operator:  Q(f,f) — A -(f— %)
Discretize the velocity space: v e R3 = {cgcy_1}
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The Lattice-Boltzmann equation is an explicit (i.e. implies no
solving of linear systems) finite difference discrtization of the
finite discrete velocity BGK Boltzmann equation:

Fe(x + 8xp, t + 6t) = Fy(x, ) 5(Fk(x,t) Ek(r(x,t),u(x,t)))

Algorithmically, LBM comprises essentially two steps: the com-
putation of the RHS of the LB equation at all nodes is called
collision whereas propagation refers to the updating of popu-
lations, i.e. the shifting of collision products to neighbor nodes.

3 Scaling

Motivated by an asymptotic analysis, two scalings are introdu-
ced relating the spatial and temporal discretization increments:

I acoustic scaling diffusive scaling
— _0s _ _ 542 _0s _
l&s—(ft = ci=F=1 [0s=0t" = c=F=gy;

We have observed, that acoustic scaling may fail with large vis-
cosities. 1D LBGK-Example: Flow induced by oscillating wall.

various flow profiles  acoustic scaling: I* error _diffusive scaling: I* error

The acoustic scaling enjoys much popularity in engineering. Ho-
wever, a thorough analysis confirms that not the acoustic but
the diffusive scaling leads asymptotically to the incompressible
Navier-Stokes equation.

4 Grid Coupling

Some populations at the interface nodes
are not reoccupied by the propagation
step. If two neighboring subgrids overlap
in a narrow zone, these unknown popu-
lations might be “refilled” by interpolating them from known
populations of the adjacent subgrid. Unfortunately, this will not
work directly. Diffusive scaling implies different particle speeds
¢ on grids with unequal spacing. As populations depend on the
abruptly changing ¢ (cf. equilibrium in sec. 2), they expose also
a discontinuous behavior which contradicts the implicit conti-
nuity assumption of interpolation. Moreover, it is not possible
to calculate the populations from the physical quantities, since
this leads either to singular or under-determined systems.
The way out is to enlarge the space of physical quantities by
appropriately chosen moments of ¢ w.r.t. to the populations.
Like the physical quantities, these higher order moments must
be asymptotically grid independent. For two adjacent subgrids
A, B the transformation of populations takes then the form

EB=M71(CB) Mcy) - By

¢ indep.moments

where M denotes the invertible mapping from the population
into the moment space-

5 Applications

For the computation of the moments all

populations are necessary. If an inter-

face node coincides with a regular node

of the adjacent subgrid, the moment transformation can be ap-
plied directly, otherwise the populations of the adjacent grid
have to be interpolated in this interface node before they can
be transformed.

Grid coupling is first tested with stationa-
ry parallel shear flows. The populationsare .| 6" " %n "
initialized by the equilibrium correspon- '
ding to the analytic solution. Because of
initial layers, several iterations have to be
performed before the scheme yields statio-
nary populations. The first example of Couette flow with con-
stant cross flowsuggests, that apart from special situations hig-
her order spatial interpolation will be necessary to avoid spoiling
effects by the coupling.

uniform grid

cubic interp. lincar interp. nearest interp.

This figure shows the nodal error of a
Poiseuille flow simulation. In order to
decrease the error caused by the qui-
te crude bounce-back boundary condi-
tions, the grid is refined near the walls.
For comparison the green curve repres-
ents the nodal error on an uniform grid. The numerical effort
can be estimated by multiplying the number of grid nodes with
the number of performed iterations. Note, that one iteration on
the bulk patch corresponds to four iterations on the refined side
patches due to diffusive scaling. Effort ratio: 25432 (adaptive)
< 39480 (uniform).

Taylor vortex t = 10 cross-section of x-vel. t = 10

The Taylor vortex provides as an ana-
Iytic solution of the 2D Stokes equation
a suitable benchmark for local grid refi-
nement. Due to viscosity the concentra-
ted vortex is quickly smeared out; since

T the simulation uses a fixed domain the
exact solution is prescnbed at the boundary (bounce-back + ve-
locity correction term). The relative L! error of the x-component
of velocity (which is by reasons of symmetry equal the y-
component error) is compared between a locally refined grid and
two computations on uniform grids (global coarse=blue; global
fine=cyan). Inside the red-framed area the grid spacing is hal-
ved; the computation is done utilizing spline (red) and linear
(magenta) spatial interpolation.

6 A Model Problem

For the examination of adaptive error control for Lattice-
Boltzmann methods the onedimensional Ruijgrok-Wu model

Opu+ 1Bzu = 7)‘—[;(u —v),
s o)
Btvfzzv— ?(ufv)

with A > 0 and w € (0,1) is considered. In the limit € to zero
the mass density p¢ := u + v converges towards a solution p of
the heat equation

in (0,7 @
(

in (a,b),
p(a) = pal-);  p(b) =py(-) in (0, 7).

Initial and boundary conditions for (1) are determined by data
for (2). Adding a quadratic term to the right hand side of (1)
leads to the viscous Burgers’ equation as limit equation.
Discretization is done by the Lattice-Boltzmann type scheme
k+1 k _ k k
UZI;H Ulk =—w(U - Vlk), 3
1
VA - VE = w(f -
with piecewise constant functions in space and time and appro-
priate boundary and initial conditions, uniform gridspacing h
and timestep 7 := AhZ. This scheme is asymptotically consi-
stent to the heat equation with viscosity v = (1 — w)/(2\w)
but not consistent to (1). An analogous situation is given in the
BGK model.
Discretization (3) obeys the stability estimate

ty
w
IUAENIP + VAW +2 ;/0 U5 — Vall®
< U + 1VA0)]* + Clpa, py)-

This provides an a priori error estimate of second order (due to
superconvergence) for the errors

in the nodal norm || - ||p on uniform grids

lleo(T) D+ lleg(T) D < llep(@)llp + llesO)llp + h*K (o).

with constants depending on higher order derivatives of the so-
lution of the limit equation. In problems without boundaries
these expressions are bounded by initial data for Uy, and V.
An a posteriori estimate in the L?-norm is given by

llea(T) N+ lles (T < llep(O)]] + lle;(0)]| + IR + h2K

with a constant KPsterior depending on discrete derivatives of
Uy, and V}, in space and time direction.

Quadratic convergence for a test problem.
plt,z) = e **sin(xz) in (0,1), ¥ =0.1, w=0.7, T =0.5.

Ervor bistory Local exor near boundary

N 80,160,240, 800 gridpoints.  Superconvergence, N — 100.

Quadratic convergence for fixed endtime is also observed on non-
uniform grids. Bisection of the gridspacing raises computational
effort by a factor of 8 due to the space time coupling. Refining
areas of relative width u reduces the computational effort by
the factor of u compared to the effort needed to reach the same
accuracy on uniform grids. LB methods on nonuniform grids
end up with problems at the grid intersections (e.g. scaling, da-
ta interpolation). Reasonable results have only be obtained by
using overlapping grids. The treatment of overlapping grids in
higher dimensions is a demanding task.
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