Grid-Coupling for the Lattice-Boltzmann-Method

Martin Rheinländer

Le may s'écoule si rapide et cette fois même trop vite. Quand je voulais jouir de la vie hélas, il s'était déjà fini.

Doktoranden-Seminar 2nd June 2003

Outline

- goal: Account of my Activity
- introduction: context around LBM
- scaling: numerical experiment and analysis
- presentation of software
- 2D benchmarks
- grid coupling
- numerical tests

There will be also many colored pictures ;-) !

Introduction to LBM

Purpose: Numerical solution of the *incompressible Navier-Stokes* equation,

$\partial_t \mathbf{u} + \mathbf{u} \cdot abla \mathbf{u}$	=	$-\nabla p + \nu \Delta \mathbf{u}$
$\operatorname{div} \mathbf{u}$	=	0
initial condition:		$\mathbf{u} _{t=0} = \mathbf{u}_0$
boundary condition:		$\mathbf{u} _{\partial\Omega}=\ldots$

describing the motion of fluids.

How it works: The LBM is an explicit finite difference scheme, given by *The* (*discrete*) *Lattice-Boltzmann Equation*, with a *relaxation term* on the l.h.s.

$$F_k(\mathbf{x} + \delta \mathbf{x}_k, t + \delta t) = F_k(\mathbf{x}, t) - \frac{1}{\tau} \Big(F_k(\mathbf{x}, t) - \mathcal{E}_k \big(r(\mathbf{x}, t), \mathbf{u}(\mathbf{x}, t) \big) \Big)$$
$$\mathbf{u} = c \sum_k F_k \mathbf{e}_k, \quad r = 1 + 3c^{-2}p = \sum_k F_k, \quad c = \delta x / \delta t \quad \delta \mathbf{x}_k = \delta x \mathbf{e}_k$$

The primary quantities F_k are called *populations*.

Background of LBM

Idea of relaxation schemes:

- + simplify structure of equation
- increase number of variables

History:

Non-Linearity \leftrightarrow High Dimension

Overview: Comparison of Discretization Methods

- *Finite Elements*: equation \longrightarrow discretization
 - variational formulation based on well-defined function spaces
 - find finite-dimensional *approximating* function spaces
 - consider restricted problem
- *Finite Differences*: equation \longleftrightarrow discretization
 - \rightarrow replace derivatives by suitable difference quotients
 - $\leftarrow \text{ perform consistency analysis}$
- Lattice-Boltzmann Method

NS equation $\stackrel{i)}{\longleftarrow}$ continuous LBE $(\epsilon) \stackrel{ii)}{\longleftrightarrow}$ discrete LBE $(\delta s(\epsilon), \delta t(\epsilon))$

- i) For $\epsilon \downarrow 0$: Convergence of derived quantities to solution of NS equation.
- ii) Classical LBM: two simultaneous limit processes in sequence of refinements.
 ⇒ FD notion of consistency for discrete LBE w.r.t. continuous LBE makes no sense.

Different Scalings for LBM

Relation between collision time τ and viscosity $\nu = \frac{2\tau - 1}{6} \frac{\delta s^2}{\delta t}$

acoustic scaling	diffusive scaling
$\delta s = \delta t \Rightarrow c := \frac{\delta s}{\delta t} = 1 \nu = \frac{2\tau - 1}{6} \delta s$	$\delta s = \delta t^2 \Rightarrow c := \frac{\delta s}{\delta t} = \frac{1}{\delta s} \nu = \frac{2\tau - 1}{6}$

Example of differing behavior, where acoustic scaling fails:

$$\partial_t u - \nu \partial_{xx} u = 0 \qquad u(0,t) = 0; \qquad u(H,t) = u_0 \sin(\omega t)$$
$$u(x,t) = u_0 \Im\left(\frac{\sinh((1+i)\gamma x)}{\sinh((1+i)\gamma H)} e^{i\omega t}\right) \quad \gamma := \sqrt{\omega/2\nu}$$

Martin Rheinländer

Reduction of Populations for quasi 1D Flows

- parallel shear flows: translation-invariant in x-direction
 2D incompressible Navier-Stokes eqn. → 1D linear advection-diffusion eqn.
- reduction of physical quantities: $u, v, p \longrightarrow u$
- Observation:
 - LBGK-algorithm respects translational invariance in the direction of coordinate-axes
 - simulation of parralel shear flows needs only linear part of equilibrium

$$\mathcal{E}_k(r, \mathbf{u}) = \underbrace{w_k \left[r + 3c^{-2}\mathbf{u} \cdot \mathbf{c}_k \right]}_{\mathcal{E}_{k, \text{lin}}(r, u, v)} + \frac{9}{2}c^{-4}(\mathbf{u} \cdot \mathbf{c}_k)^2 - \frac{3}{2}c^{-2}\mathbf{u}^2 \right]$$

Theorem: Initialize D2Q9-LBGK algorithm by: $F_k(x, y, 0) = \mathcal{E}_{k, \text{lin}}(1, \overline{u}(y), 0)$

 \Rightarrow 9 population scheme \longrightarrow 3 population scheme

Continuus LB Equations for 3 population scheme

reduced scheme with signs $(s_k)_k = (0, -1, 1)$, weights $(w_k)_k = (\frac{2}{3}, \frac{1}{6}, \frac{1}{6})$:

$$P_k(y + s_k \delta y, t + \delta t) - P_k(y, t) = -1/\tau \left(P_k(y, t) - Q_k(y, t) \right)$$

$$u := P_0 + P_1 + P_2 \quad \text{equilibrium:} \ Q_k := w_k u + 1/2 \, s_k \, c^{-1} \, a \, u$$

• Question: How to relate this *"discrete"* FD equation to a *"continuous"* PDE ?

• consider:
$$\partial_t p_k(y,t) + \beta s_k \partial_y p_k(y,t) = -\gamma \frac{1}{\tau} \left(p_k(y,t) - q_k(y,t) \right)$$

• integrating along characteristics $t' \mapsto (y + s_k \beta t', t + t')$ from t to $t + \delta t$ and approximating integral of relaxation term by *left side rule*:

$$p_k(y + s_k\beta\delta t + \delta t) - p_k(y, t) = -\gamma \,\delta t \,\frac{1}{\tau} \big(p_k(y, t) - q_k(y, t) \big)$$

• thus, the FD eqn. is recovered, if: $\beta \delta t = \delta y$ and $\gamma = \frac{1}{\delta t}$.

Analysis of Acoustic and Diffusive Scaling

• acoustic scaling:
$$\frac{\delta y}{\delta t} = \beta = 1$$
, $\delta t = \gamma^{-1} = \epsilon$

$$\partial_t p_k(y,t) + s_k \,\partial_y p_k(y,t) = -\epsilon \tau^{-1} \left(p_k(y,t) - q_k(y,t) \right) \tag{1}$$

• diffusive scaling:
$$\frac{\delta y}{\delta t} = \beta = \epsilon$$
, $\delta t = \gamma^{-1} = \epsilon^2$

$$\partial_t p_k(y,t) + \epsilon s_k \,\partial_y p_k(y,t) = -\epsilon^2 \tau^{-1} \left(p_k(y,t) - q_k(y,t) \right) \tag{2}$$

• introduction of moments:

acoustic scalingdiffusive scaling
$$m_0^a = p_0 + p1 + p2$$
 $m_0^d = p_0 + p1 + p2$ $m_1^a = p_2 - p1$ $m_1^d = \epsilon^{-1} (p_2 - p1)$ $m_2^a = p_2 + p1$ $m_2^d = p_2 + p1$

Asymptotic Behavior

- algebraic manipulations: continous $LBE \rightarrow equivalent moment system$
- assumption: moments remain bounded for $\epsilon \downarrow 0$, i.e. are O(1)-function.
- combination of these new equations \Rightarrow macroscopic limit equations:

acoustic scaling

diffusive scaling

$$\partial_t u + a \partial_y u - \frac{\tau \epsilon}{3} \partial_{yy} u - \tau \epsilon \partial_t m_1 = O(\epsilon^2) \quad \partial_t u + a \partial_y u - \frac{\tau}{3} \partial_{yy} u = O(\epsilon^2)$$

Software Development

- since january 2003: development of a 2D LB code in C++
 - basic program based on uniform square grids
 - extension for refinement zones (patches)
 - interpolation tool
- purpose:
 - demonstration and validation of the LB method (numerical experiments)
 - further developments, e.g. boundary conditions, grid coupling
- requirements:
 - simulation of standard benchmarks,
 - direct visualization, which is very desirable for time-dependent problems
 - changing parameters without recompiling
 - usable also for other people (hopefully)

Program Features

Iterate	Matlab	export Analyt	NodeLink Info	Quit
terate N	export Macro	export Divers	Node Flow Info	ReSet
PopChange	export Pops	export Config	Setting Info	Relnit
Iteration Info	export ColP	Save	Check Pops	Iterat Option

${\sf CommandWindow}$

StepSize:	0	Limithtode	
SaveStepSize:	1		
VieuStonSize.	10	L CALLER OF	010

${\sf OptionWindow}$

- integration of MatLab by command lines ⇒ direct visualization and analysis of output data (manually resp. automatically)
- interactive communication between program and user even if the computation is running
- possibility of saving and retrieving data

Technical Ingredients

- object oriented design: implementation in $C++ \Rightarrow$ modularity
- Qt based graphical user interface (GUIs/windows)
- use of POSIX threads ⇒ feigns simultaneity of computation and interaction with the user on a single processor machine
- use of the MatLab Application Interface in order to start MatLab from the program as postprocessing tool
- one-way coupling: program sends data to Matlab via a pipe

The program is still 50% terminal based, i.e. program and MatLab output is displayed on the parent terminal, also the terminal serves as input window where it is possible, in order to loose not too much time in the GUI programming.

Thread_2_Function	main	Thread_1_Function
Messenger ↑ MatlabEngine MatlabInterface while(Quit=false) switch(Command2) getInfo export data send MatlabCommand start/stop Matlab default: sleep end clean up & exit	<pre>init QApplication, Messenger, CommandWindow, OptionWindow set SIGNAL–SLOT connections CommandWindow ↔ OptionWindow CommandWindow → Quit init Mesh (Messenger) SPLIT PROGRAM by calling thread functions show CommandWindow enter Qt–event loop controlling the GUIs</pre>	Messenger ↑ MatlabEngine MatlabInterface while(Quit=false) switch(Command1) ITERATE(Messenger↑) resetMesh(Messenger↑) reinitMesh(Messenger↑) start/stop Matlab default: sleep end clean up & exit
CommandWindow <i>Messenger</i> ↑ OptionWindow <i>Messenger</i> ↑	Interface Messenger Mesh ↑ bool Command1, Command2, Quit int Thread1_ID, Thread2_ID	Mesh discretization LBM algorithm

Martin Rheinländer

ITWM & AGTM Kaiserslautern

Class Design for LBM Algorithm

Local Aspects

Global Aspects

- elementary geometric classes:
 class TGrid; class TRectangle;
- definition of configuration:
 class TConfig;
- assembly of mesh patches is defined in the node type array of class TPatch; initialization by elementary classes
- class TSubMesh: assembles node array links nodes, global evolution methods, inherits TPatch
- class TMesh: links interface nodes of submeshes, global time-step method
- class TMatlabInterf: collects data from nodes in matrices, sends them to MatLab

```
class TNode{
   double Population[9];
   double ColProduct[9];
   TNode* Neighbour[9];
   void propagate();
   void collide();
};
```

derived node classes with special propagation methods:

class	TLidNode;		boundary
class	TEdgeNode;		node
class	TInletNode;		types
class	TOutletNode;		types
class	TInterfNode;		coupling
class	TCoupleNode;	>	node
class	THangingNode;	J	types

Standard 2D Benchmarks

1. Flow around an Asymmetrically Placed Rectangle $Re = 750, 80 \times 320$ LBGK

"Dream": full developed Karmàn vortex street

Martin Rheinländer

ITWM & AGTM Kaiserslautern

Simulation of Standard 2D Benchmarks: Remarks

- boundary conditions:
 - Dirichlet b.c. for moving lid and inlet boundaries: bounce-back + correction term for non-zero boundary velocity

$$u \partial_{\mathbf{n}} \mathbf{u} - p\mathbf{n} = 0 \text{ at outlet}, \quad \int_{outlet} p = 0$$

translation into LB: equilibrium + velocity of left neighbor + pressure set to 0 too restrictive, not consistent (?!) and not satisfactory à la longue

- how to check accuracy and reliability in space and time without any external help?
 - 1st idea: perform computation with equal parameter setting (u_0, ν, μ) , geometry) on a sequence of refined grids \rightarrow interpolation tool to compare results on different grids
 - 2nd idea: perform computations with equal Reynolds numbers but different parameter settings \rightarrow compare corresponding times
- problems with pressure, different behavior of vorticity and divergence, although both are computed by derivatives of velocity field (?)

2D Bechmarks with Analytic Solution

$$\begin{aligned} u(x,y,t) &= -\frac{u_0}{a}\cos(ax)\sin(by)\exp\left(-\nu(a^2+b^2)t\right) \\ v(x,y,t) &= \frac{u_0}{b}\sin(ax)\cos(by)\exp\left(-\nu(a^2+b^2)t\right) \\ p_{\text{Navier}}(x,y,t) &= -\frac{u_0^2}{4}\left(\frac{\cos(2ax)}{a^2} + \frac{\cos(2by)}{b^2}\right)\exp\left(-2\nu(a^2+b^2)t\right) \\ p_{\text{Stokes}}(x,y,t) &= 0 \end{aligned}$$

Taylor Vortex (rotationally sym.)

Remark on initial conditions

2D Bechmarks with Analytic Solution: Remarks

• problems with pressure (depending on parameters)

Note: if (almost) mass conservation holds for the LB algorithm, then the mean pressure w.r.t. computation area remains constant, whereas the real pressure may change its average value (e.g. Taylor vortex as solution in \mathbb{R}^2).

• vortex solutions are not representative enough benchmarks

they have as solutions of Stokes and Navier-Stokes equation only diffusive character \Rightarrow phenomena due to advection cannot be observed.

Property (Galilei invariance of the NS equation): Let the pair $(\mathbf{u}(\mathbf{x},t), p(\mathbf{x},t))$ be a solution of the incompressible NS equation and \mathbf{c} a given velocity vector; then the pair

$$\tilde{\mathbf{u}}(\mathbf{x},t) := \mathbf{u}(\mathbf{x} - t\mathbf{c}, t) + \mathbf{c} \qquad \tilde{p}(\mathbf{x},t) := p(\mathbf{x} - t\mathbf{c}, t)$$

is also a solution of the NS equation (but not Stokes !).

Grid Coupling: The Problem

grid interface with overlap

- problem: fill empty populations (red)
- ⇔ find a rule, that prescribes values for those populations, whose characteristics come out of the the interface (coupling condition)
 - difficulty: diffusive scaling entails $c = \frac{1}{\delta s} \Rightarrow$ discontinous grid velocity \Rightarrow jumping populations
- consequence: interpolation of populations due to "discontinuity" must not be applied
- way out: impose continuity conditions of other/physical quantities and recover unknown populations

à la volume finis:	0	0	o	0	0	O	×0× ×0× × × × ×
à la differences finies:	0	o	o	0	0	Ō	⊗ × ⊗ × × × ×

- FD-coupling less complicated than FV-coupling but "not consistent" with half-distance boundary interpretation of bounce-back
- overlapping: *interface node* can get "full information" by its *master-node* ⇒ avoids disturbing effects due to interpolation as much as possible
- two less successful possibilities of coupling:
 - determine unknown populations by solving linear equation system, to assure equality of some moments with *master-node* moments ⇒ which ones ? system might be singular !
 - u, v, p will be prescribed by *master-node*; set equilibrium for either all or only unknown populations \Rightarrow equilibrium is already bad as boundary condition

Grid-Coupling: Heuristic Approaches (cont.)

• current idea: Find a linear transformation T_{c_1,c_2} , such that

$$T_{c_1,c_2} \cdot \mathcal{E}(r,u,v,c_1) = \mathcal{E}(r,u,v,c_2) \quad \text{and} \quad \langle m(c_2), T_{c_1,c_2} \cdot F \rangle = \langle m(c_1), F \rangle$$

for any moment generating polynomial m and any population tuple F.

- charcterization: Is there a unique mapping T_{c_1,c_2} with these properties ? This mapping should then be constructed by the polynomials, that are orthogonal w.r.t. to the scalar generated by the LB equilibrium weights.
- What is a moment ? Consider polynomial $p(\mathbf{c}) = p(c_x, c_y)$ and restrict it to the D2Q9 star. \Rightarrow the associated moment is then:

$$\sum_{k} p(\mathbf{c}_k) F_k$$

Moment Transformation

$$m_{1}(\mathbf{c}) = 1 \qquad \text{pressure: } \langle m_{1}, F \rangle = 1 + 3c^{-2}p$$

$$m_{2}(\mathbf{c}) = c_{x} \qquad \text{x-velocity: } \langle m_{2}, F \rangle = u$$

$$m_{3}(\mathbf{c}) = c_{y} \qquad \text{y-velocity: } \langle m_{3}, F \rangle = v$$

$$m_{4}(\mathbf{c}) = c_{x}c_{y}$$

$$m_{5}(\mathbf{c}) = c_{x}^{2} - c_{y}^{2}$$

$$m_{6}(\mathbf{c}) = c_{x}^{2} + c_{y}^{2} - \frac{2}{3}c^{2}$$

$$m_{7}(\mathbf{c}) = 3c_{x}c_{y}^{2} - c^{2}c_{x}$$

$$m_{8}(\mathbf{c}) = 3c_{x}^{2}c_{y}^{2} - 6(c_{x}^{2} + c_{y}^{2}) + 2$$

moment transformation:

$$F_B = M^{-1}(1) \cdot C^{-1}(c_B) \cdot C(c_A) \cdot M(1) \cdot F_A$$

modified moment transformation, taking pressure relation into account:

$$F_{B} = M^{-1}(1) \cdot \left(1_{p} + \tilde{C}^{-1}(c_{B}) \cdot \tilde{C}(c_{A}) \cdot \left(M(1) \cdot F_{A} - 1_{p} \right) \right)$$

Grid with Refined Patch

Organization of the Time Step

```
void TMesh::doTimeStep(int Level){
  SubMesh[Level]->collide();
  SubMesh[Level]->propagate();
  SubMesh[Level]->advanceTime();
```

```
if(Level<LevelNum-1){
    int R0 = getRefOrd(SubMesh[Level],SubMesh[Level+1]);
    SubMesh[Level+1]->getCoupleMoments();
    //recursion
    for(int it=0; it<R0*R0; it++) doTimeStep(Level+1);
    SubMesh[Level]->updateInterface();
} if(Level==0){t+=dt; IT++;}
```

}

The Role of Interpolation

Lid Driven Cavity Re = 40: Refinement around Boundary

Martin Rheinländer

Grid-Coupling for the Lattice-Boltzmann-Method

30/34

Grid-Coupling for the Lattice-Boltzmann-Method

31/34

Student Version of MATLAB

Lid Driven Cavity: Divergence of Velocity Field

grid size	40×40	80×80	120×120	160×160	200×200
mean abs. value:	8.843e-3	9.347e-3	9.533e-3	9.631e-3	9.693e-3
maximum norm :	1.493e-1	2.906e-1	4.293e-1	5.675e-1	7.056e-1

Re = 40

grid size	40×40	80×80	120×120	160×160	200×200
mean abs. value:	9.368e-3	9.808e-3	9.979e-3	1.007e-2	1.013e-2
maximum norm :	1.621e-1	3.123e-1	4.564e-1	5.983e-1	7.394e-1

Re = 100

Lid Driven Cavity: Deviation from Equilibrium

grid size	40×40	80×80	120×120	160×160	200×200
mean abs. value:	3.509e-4	8.554e-5	3.773e-5	2.115e-5	1.351e-5
maximum norm :	1.191e-2	5.932e-3	3.949e-3	2.960e.3	2.367e-3

Re = 40

grid size	40×40	80×80	120×120	160×160	200×200
mean abs. value:	3.852e-4	8.785e-5	3.784e-5	2.096e-5	1.329e-5
maximum norm :	1.124e-2	5.606e-3	3.734e-3	2.799e-3	2.238e-3

