Asymptotic Investigation of the Lattice-Boltzmann Method and Grid Coupling

Martin Rheinländer Fraunhofer ITWM Kaiserslautern Fachbereich Mathematik, TU Kaiserslautern

> HYKE Workshop, Uni Saarbrücken February 23-25, 2004

Introduction

Project: *Consistent* grid coupling algorithms for LB methods

Motivation: A priori grid refinement

Problem: Standard LB-algorithm: only on uniform grids !

Strategy:

- understand simple cases
- generalize to complicated problems

Domain_PBreacherpheentents

Remark: Any *smooth* solution is a *weak* solution. v_1, v_2 smooth: When \tilde{v} is a *global weak* solution, i.e. $\forall \phi \in \mathcal{C}_c^{\infty}(\mathcal{I} \times \mathcal{U})$:

$$-\int_{\mathcal{I}\times\mathcal{U}} (\tilde{v}\partial_t\phi + \nu\nabla\tilde{v}\cdot\nabla\phi) \stackrel{!}{=} \sum_{i=1}^2 \int_{\mathcal{I}\times\mathcal{U}_i} (\partial_t v_i - \nu\Delta v_i)\phi = \int_{\mathcal{I}\times\mathcal{U}} g\phi$$

 \Leftrightarrow Interface conditions:

$$v_1|_{\Gamma} \stackrel{!}{=} v_2|_{\Gamma} \wedge \mathbf{n} \cdot \nabla v_1|_{\Gamma} \stackrel{!}{=} \mathbf{n} \cdot \nabla v_2|_{\Gamma}$$

Physical meaning: equality of v and its normal flux (heat flow through Γ) 1D model problem: Coupling conditions: $v_1(t,\xi) = v_2(t,\xi) \wedge \partial_x v_1(t,\xi) = \partial_x v_2(t,\xi)$

D1P2-Model for the Heat Equation

Discrete LBE with diffusive scaling:

 $P(t + h^{2}, x + sh, s) - P(t, x, s) = \frac{1}{\tau} \left(\frac{1}{2} U(t, x) - P(t, x, s) \right) + \frac{1}{2} h^{2} g(t, x)$ **Remark:** $U \approx v |_{\mathcal{T}(h^{2}) \times \mathcal{G}(h)}$ with $\partial_{t} v - \nu \partial_{x}^{2} v = g$ $\nu = \tau - \frac{1}{2}$ **Working hypothesis:** \exists smooth functions $p^{(l)} : \mathbb{R}_{0}^{+} \times [0, L] \times S \to \mathbb{R}$ $0 \le l \le 4$ \exists bounded grid function $R : \mathcal{H} \times \mathcal{T}(h^{2}) \times \mathcal{G}(h) \times S \to \mathbb{R}$

$$P = p^{(0)} + h p^{(1)} + \dots + h^4 p^{(4)} + h^5 R \quad (ansatz)$$

Formal Asymptotic Analysis

- $u^{(l)} := p_1^{(l)} + p^{(l)_2}$, plug ansatz into discrete LBE: assume equation valid $\forall (t, x) \in \mathbb{R}_0^+ \times [0, L], h > 0$
- Finite difference \rightarrow Taylor $\sum_{l=0}^{4} h^{l} \left[h^{2} \partial_{t} \mathbf{p}^{(l)} + h \operatorname{s} \partial_{x} \mathbf{p}^{(l)} + \frac{1}{2} h^{2} \partial_{x}^{2} \mathbf{p}^{(l)} \right] + O(h^{3}) = \frac{1}{\tau} \sum_{l=0}^{4} h^{l} \left[\frac{1}{2} u^{(l)} - \mathbf{p}^{(l)} \right] + \frac{1}{2} h^{2} g$
- Collect terms of equal order in h

$$h^{0}: p^{(0)} = \frac{1}{2}u^{(0)}$$

$$h^{1}: p^{(1)} = \frac{1}{2}u^{(1)} - \tau s\partial_{x}p^{(0)}$$

$$h^{2}: p^{(2)} = \frac{1}{2}u^{(2)} - \tau s\partial_{x}p^{(1)} - \frac{1}{2}\tau\partial_{x}^{2}p^{(0)} - \tau\partial_{t}p^{(0)} + \frac{1}{2}\tau g \quad \text{sum over s}$$

$$\Rightarrow \quad \partial_{t} u^{(0)} - (\tau - \frac{1}{2}) \quad \partial_{x}^{2} u^{(0)} = g$$

• **Observation:** Since $u^{(0)} = v$: $U = v + h u^{(1)} + O(h^2)$

Formal Asymptotic Analysis (cont.)

- 3^{rd} order: $\partial_t u^{(1)} (\tau \frac{1}{2}) \partial_x^2 u^{(1)} = 0$
- Therefore: $u^{(1)} \equiv 0$ if $U(0, \cdot) = v(0, \cdot) + 0 \frac{h}{h} + \dots$
- 4th order: $\partial_t u^{(2)} (\tau \frac{1}{2}) \partial_x^2 u^{(2)} = \text{RHS}$ RHS = $-(\tau^3 - 2\tau^2 + \frac{2}{3}\tau - \frac{1}{3}) \partial_x^4 u^{(0)} - (\tau^2 - \frac{3}{2}\tau + \frac{1}{4}) \partial_x^2 g - \frac{1}{2} \partial_t g$
- **Observation:** Discrete LBE: 2nd order consistent to heat equation.

 $U = v + h^2 u^{(2)} + O(h^3)$

- Relation between v and $P = p^{(0)} + h p^{(1)} + h^2 p^{(2)} + O(h^3)$: $p^{(0)} = \frac{1}{2}v$ $p^{(1)} = -\frac{1}{2}\tau s \partial_x v$ $p^{(2)} = u^{(2)}$ $p^{(3)} = u^{(3)} - \frac{1}{2}\tau s \partial_x u^{(2)} + \frac{1}{2}\tau (\tau - 1) s \partial_x \partial_t v + \frac{1}{12}\tau s (3\tau - 1) \partial_x^3 v$
- $F := h^{-1} (P_2 P_1) = -\tau \partial_x v + O(h^2)$

- Translate: macroscopic condition \rightarrow mesoscopic LB level
- Refinement factor: $N \in \mathbb{N}$: $h_f = h$, $h_c = N h$ $v_{\text{left}} \stackrel{!}{=} v_{\text{right}} \Rightarrow P_{c,1} + P_{c,2} = P_{f,1} + P_{f,2}$ $\partial_x v_{\text{left}} \stackrel{!}{=} \partial_x v_{\text{right}} \Rightarrow P_{c,1} - P_{c,2} = N (P_{f,1} - P_{f,2})$ (*)
- solve for empty pops: $P_{c,1}$, $P_{f,2}$

Analysis of the Coupling Condition:

- Separate asymptotic ansatz for coarse and fine grid with h_c , h_f as above
- Plug into (*) \rightarrow equate terms of equal order w.r.t. h
- Extract interface conditions for $u^{(0)}, u^{(1)}, u^{(2)}$

D1P2 Model: Numeric Test - Snapshot t = 0.8

Example: $\nu = 0.001 \Rightarrow \tau = 0.501$ domain: \mathbb{T}^1 $v(t, x) = J(t) \cos(2\pi x), \quad f := -\tau \partial_x v(t, x) = J(t) 2\pi\tau \sin(2\pi x)$ $g(t, x) = J(t) 4\pi^2 \nu \cos(2\pi x) + J'(t) \cos(2\pi x)$ Uniform coarse grid: 20 nodes, interface nodes: 5 (left), 15 (right), N = 2

Setting: nu=0.001, M=10, West=3, East=8, N=2, maxIt=200, Step=10, InitMode=1, InitPhase=0.5, Frequency=1, smoothStart with source

Setting: nu=0.001, M=10, West=3, East=8, N=2, maxIt=200, Step=10, InitMode=1, InitPhase=0.5, Frequency=1, smoothStart with source

LB-Models

	D1P2	DAR 1D	$\nu = \tau$	$Q(u, s) = \frac{1}{2}u \left(1 + \epsilon sa - \epsilon^2 \tau c\right)$	$\mathrm{k}=\tfrac{1}{2}g$
$1 \qquad 3 \qquad 2$ $1 \qquad 1 \qquad 1 \qquad 1$ $\frac{1}{2n} \qquad \frac{n-1}{n} \qquad \frac{1}{2n}$	D1P3	11	$\nu = \frac{\tau}{n}$	$Q(u, s) = w_s u \left(1 + \epsilon n s a - \epsilon^2 \tau c\right)$	$\mathrm{k}=\mathrm{w_{s}}~g$
$3 \qquad 1 \\ 4 \qquad 4$	D2P4	DAR 2D	$\nu = \frac{\tau}{2}$	$Q(u, \mathbf{s}) = \frac{1}{4}u \left(1 + 2\boldsymbol{\epsilon} \mathbf{s} \cdot \mathbf{a} - \boldsymbol{\epsilon}^2 \tau c\right)$	$\mathbf{k}=\tfrac{1}{4}g$
	D2P4X	71	u = au	$Q(u, \mathbf{s}) = \frac{1}{4}u \left(1 + \boldsymbol{\epsilon} \mathbf{s} \cdot \mathbf{a} - \boldsymbol{\epsilon}^2 \tau c\right)$	$\mathbf{k}=\tfrac{1}{4}g$
	D2P9	Stokes- Oseen	$\nu = \frac{\tau}{3}$	$Q(p, \mathbf{u}, \mathbf{s}) = 3 \mathbf{w}_{\mathbf{s}}(p + \mathbf{s} \cdot \mathbf{u}) \dots + 9 \mathbf{w}_{\mathbf{s}} \epsilon [3(\mathbf{s} \cdot \mathbf{a}) (\mathbf{s} \cdot \mathbf{u}) - \mathbf{a} \cdot \mathbf{u}]$	$k = 3w_s s \cdot g$

Limit equations: i) $\partial_t u + \partial_x (au - \nu \partial_x u) + cu = g$ (DAR 1D) ii) $\partial_t u + \nabla \cdot (au - \nu \nabla u) + cu = g$ (DAR 2D) iii) $\partial_t u + \mathbf{a} \cdot \nabla \mathbf{u} - \nu \Delta \mathbf{u} = -\nabla p + \mathbf{g}$ $\nabla \cdot \mathbf{u} = 0$

Remark: 2D LB-models reduce to 1D LB-models in case of translational invariance.

Coupling for other LB Models

D1P2:

 $\#\{\text{macroscopic coupling cond.}\} = \#\{\text{empty interface pops}\} = \#\{\text{pops per node}\}$

Challenges:

- i) #{macroscopic coupling conditions} < #{empty interface pops} too much LB interface-conditions → contradictive w.r.t. macroscopic level
- ii) 2D: hanging nodes \rightarrow spatial interpolation
- iii) 2D: corner nodes \leftarrow boundary not smooth (!)
- iv) Generally: initial layers \Rightarrow working assumption violated

Possible problems:

- i) loss of 2^{nd} order consistency for moments of 1^{st} and higher order
- ii) reduction of stability

D2P9 Model: Numeric Test - Snapshot t = 0.5Benchmark: domain \mathbb{T}^2 , $\nu = 0.01$ $\tau = 0.53$

Stationary eigenmode of Stokes operator with smooth initialization ($\mathbf{u} = J(t)\mathbf{e}$)

Grid Coupling for LB Methods

Setting: nu=0.01, M=10, SWx=3, SWy=3, NEx=8, NEy=8, N=2, maxIt=150, Step=5, InitMode=1, InitPhase=0.5, Frequency=1, smoothStart with forcing, Method=v5cubic(Coupling)/spline(Overlapping)

D2P9 Model: Numeric Test - L^{∞} Error of *P* versus *ds*

Setting: nu=0.01, M=10, SWx=3, SWy=3, NEx=8, NEy=8, N=2, maxIt=150, Step=5, InitMode=1, InitPhase=0.5, Frequency=1, smoothStart with forcing, Method=v5cubic(Coupling)/spline(Overlapping)