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Introduction Intention & Overview

Problem:

consistency analysis   → relatively simple

stability  analysis         → complicated, tricky

Background-question: Can formal asymptotic expansions help to 
formulate hypotheses about the stability behavior of a numerical scheme?

Here: Case study of a model problem.

Additional motivation: complete understanding of an exemplary lattice 
Boltzmann algorithm with all inherent features like:

convergence, time-scales, initial layers, boundary layers, stability, consistency,

spectrum of evolution operator, etc.

1st part: Stability analysis based on diagonalization of evolution matrix

→ attempt to be mathematically rigorous 

2nd part: (involving more intuition) presents twoscale expansions as

possible & desirable tool to analyze stability  

→ comparison and short discussion with stability analysis

Outline:



Introduction The model algorithm

Velocity set: 
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Abbreviations: ∃∀ means ‚for All‘, means ‚it Exists‘.



Stability Matrix formulation of the algorithm
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Iteration = evolution step

• collision   (nodal operation)

• transport (left/right shift)
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Stability Characteristic polynomial of the evolution matrix

Spectrum of shift matrices L ,R ( transport matrix):  unit roots Nwwww N
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Eigenvectors           discrete Fourier transform yields diagonalized transport matrix,

which respects special structure of collision matrix. 

⇒
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Stability Spectrum of the evolution matrix & spectral portraits

Eigenvalues of evolution operator associated to arbitrary grid are contained in:
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Stability Spectral portraits & Observations

Observation: 1020 1 ≤⇔⊂∈∀ aDa )(),(:],[ ωω S
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Stability CFL condition

CFL condition:  
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Better idea: consider first special cases like           or     .

Discuss then the general case using the theorem of Rouché (→ complex analysis).■

1=ω πϕϕ == ,0

N.B.: The CFL-condition does not hold if the periodic boundary conditions are 
replaced by bounce-back like boundary conditions.

Theorem: The lattice-Boltzmann algorithm (as defined previously) respects the       

CFL-condition, i.e.                for .11,20 ≤≤−≤≤ aω1)( ≤Eρ



Stability Norm stability

rDf =Differential equation

FD-discretization hhh RFD =

The numeric scheme is stable w.r.t.          if:
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Especially this means for an explicit scheme like the lattice-Boltzmann algorithm:
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Observation: The condition                                                   is only necessary for 

stability but not sufficient. However      is diagonalizable (no nontrivial Jordan blocks):
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Stability L2-Stability
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Short course (L2): All expansions hold in the 2-norm at least .

Remark: Diffusive scaling  → stability result in maximum-norm (uses positivity of evolution matrix)

Due to compactness of              : ]2,0[ π ( )
N∈nnf globally bounded. ■

Proof: Discrete Fourier trafo (+permutation of indices) of evolution matrix   → block-diagonal 

matrix with 2x2 blocks:
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invariance w.r.t. unitary transformations (e.g. discreteFourier trafo)⇒

Theorem: The evolution matrix of the LB algorithm (previously defined) satisfies the

the stability condition w.r.t. the L2-norm, if .11,20 ≤≤−≤≤ aω



Multiscale expansion Motivation: linear ↔ quadratic time scale

Observation: advection                      → linear time scale

deformation (flattening) → quadratic time scale

Coarse grid:   30 nodes

Fine      grid:   60 nodes
5.0,7.1 == aω
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Multiscale expansions Motivation: linear↔cubic time scale

Observation: advection                      → linear time scale

distortion (undulations) → cubic time scale

Coarse grid:   60 nodes

Fine      grid: 120 nodes
5002 .,. == aω
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Multiscale expansion Regular versus twoscale expansion – the idea
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Approximate grid function of LB-algorithm by regular expansion:

grid function prediction 

function
0‘th asymptotic
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Requirement

determines order functions uniquely → consistency analysis, e.g.
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must satisfy: → details: short course L2 (M. Junk)

Shortcomings: appearence of secular terms → regular expansion only valid for time 

intervals of length            → not capturing long time behavior over            intervals.)(1O )(
h
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Twoscale ansatz: 2 time variables to take into account observed effects.
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Multiscale expansion Connection to stability

Why do we expect a multiscale expansion to tell something about stability?

Instabilities may become noticeable near the boundary of the stability domain as 
background phenomena occuring in slower time scales.

�2nd time variable – formally independent but coupled if compared  with grid function.

�Order functions are not uniquely determined   → further assumptions & restrictions.

�Easy to compute if regular expansion is available!

1 is always eigenvalue of evolution operator independently of  

associated eigenvector   = constant vector (= projection of  smooth function onto grid)
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Multiscale expansion The outcome – evolution equations

Procedure to derive determining equations for order functions similar to regular case.  
Strategy: minimize the residual ↔ maximize order of residual  → details: short course L2 (M. Junk)
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ii) Evolution in the slow time variable:

General case               :   diffusion equation
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Special case               :  dispersive equation2=ω

Typical effect of PDE evolution operator on initial condition:  damping, flattening --- undulating, oscillating
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i)  Evolution in the fast time variable described by advection equation:

Result for the leading (0‘th) order:

( )( )2
2
11 1 a−−= ωµCoefficients:

What do we learn?    1) possibility to get a precise quantitative prediction of grid function.

2) quantitative understanding of the observed effects └→ see later

Implications concerning stability: ⇒< 0µ backward diffusion equation
ill-posed IVP  → instabilities expected       ↔ stable behavior for 0≥µ
dispersive equation indifferent w.r.t. sign of                no hypothesis!⇒λ
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Deceptive cases: 

1) violation of CFL condition with unstable explicit

relaxation: 01.1      ,05.2 == aω

Multiscale expansion Comparison and limits of stability prediction
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2) violation of CFL condition with limit value for

1) Near 1, only eigenvalues pertaining to 

‚non-smooth‘ eigenvectors move out of 

closed unit disk as          leave  domain 

of stability.

2)     Eigenvalues do not cross boundary of 

unit disk inside vicinity of 1. 

Hypothesis about stability based on  

multiscale expansion should fail if:

a,ω



Multiscale expansion & Conclusion Test: approximation by twoscale ansatz

Snapshots 8.02 == aω

Prediction of the (numeric) mass moment:                                  
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Nasty example: arbitrarily smooth     but 
not analytic (n‘th derivative cannot be bounded by     )nC

Observation: good approximation over 

time intervals of increasing length:
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Another aspect of two scale 
expansion:

time interval          error
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Conclusion .

Final judgement needs more case studies.

Above all:     →clarify  ideas & notions being still vague

e.g. classification of instabilities → topic of future work

With exception of the corners the boundary of the actual stability 

domain is accurately described. Corners seem like „magic doors“

to falsely pretended  stability domains.

Some instabilities cannot be captured due to implicit 

smoothness assumption of  prediction function 

(e.g. Taylor expansion). 

High order prediction of mass moment.



Introduction Relevance of analysis -- the cycle of development .

improvement

experiments

numeric  

algorithmreason ? justification?works fineunsatisfying

s
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improvement

test with 

benchmarks

systematic  approachsystematic  approachsystematic  approachsystematic  approach

analysis
�consistency  

�stability

analysis
�consistency  

�stability

� improve consistency by systematic analysis  &  test  stability  experimentally

� guidance to modify bad scheme:  
try to shift break down of regular expansion  into higher order

� good scheme: behaves regularly            well describable by regular expansion ⇒


