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Initialization a la Constrained Runs

Correspondence: populations <« moments

conserved moments
F=(F,...FKk) M=( My,...,Mg ,..,Mg)
F=M"M M = MF

Physical ICs — (subset of) conserved moments for ¢ = 0
Standard initialization (equilibrium) — oscillating initial layers ®




Initialization a la Constrained Runs

Correspondence: populations <« moments

conserved moments
F=(F4,... Fg) M=( My,...M¢ ..., Mg)
F=M"'M M= MF
Physical ICs — (subset of) conserved moments for ¢ = 0

Standard initialization (equilibrium) — oscillating initial layers ®

= Preprocess F = (Fq, ..., Fx) before starting LB simulation

CR initialization scheme (Mei et al., Van Leemput et al.):
pick some G(0), (e.g. equilibrium determined by M;(0), ..., Mc(0))
repeat

F = LBM(G(n)) (regular LB time step)

M = MG (traform to moments)

M(n+1) «— M (constraint: reset known moments)
Gn+1) = M~ *M(n+1) (convert moments to populations)

until ( |[M(n+1) —M(n)|| < TOL )
initialize LB simulation by setting F(0) = G(c0)




Application to model problem

Op+ adp= 0
D1Q2 algorithm solving IVP: { P P
IO<07 ) = Po
1 1 F_1\  (R)\ mass moment (conserved)
-1 1 F.i) \@®/ flux moment
Initialization of moments: 1(0) = po < hxe
d(0) =7
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Application to model problem

Op+ad.p= 0
D1Q2 algorithm solving IVP: { tw P
/0(07 ) = Lo
1 1 F_1\  (R)\ mass moment (conserved)
-1 1 F.i) \@®/ flux moment
Initialization of moments: 1(0) = po < AR
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Observation: Oscillations (initial layer) persist!
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Analysis of failure

What does the CRS yield? — fixed point iteration for F(0):

Gn+1) =M IME 6(n) + (9)], 1) = ()
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Resulting regular expansion for F(0) w.r.t. grid spacing h:
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Analysis of failure

What does the CRS yield? — fixed point iteration for F(0):
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Analysis of failure

What does the CRS yield? — fixed point iteration for F(0):
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Analysis of failure

What does the CRS yield? — fixed point iteration for F(0):

G(n+1) =M‘1[HME G(n) + (%0)}7

Resulting regular expansion for F(0) w.r.t. grid spacing h:

F(0) = 3(1+as)po — 5-hdzpos + O(h?)
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A different perspective — heuristic reasoning

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal = minimized error, maximal ‘smoothness
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A different perspective — heuristic reasoning

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal = minimized error, maximal ‘smoothness

F(0) = fO(0) + rfD(0) + h2F2(0) + ...

f0(0) = 31 +as) g
where in case of the model LBA{ (1)(0) = —.L(1 — a?)sa.p(
{2 0) = —4& - 11— a®)asd2p

Difficulty: Generally f()(0),f(2)(0), ... complicated to ascertain!

Request for initializer (sort of iterative scheme fitting into LB framework)
building up regular expansion automatically
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A different perspective — heuristic reasoning

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal = minimized error, maximal ‘smoothness

F(0) = fO(0) + rfD(0) + h2F2(0) + ...

f0(0) = 31 +as) g
where in case of the model LBA{ (1)(0) = —.L(1 — a?)sa.p(
2 0) =~ - $H(1 - aPasdZpg

Difficulty: Generally f()(0),f(2)(0), ... complicated to ascertain!

Request for initializer (sort of iterative scheme fitting into LB framework)
building up regular expansion automatically

Hypothesis |I: — practical characterization of regular expansion

Optimal initialization < ‘smooth’ initial behavior.
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Abstract setting
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Concretization of intuitive idea

‘Discrete’ smoothness:

A sequence of grid functions approximates a smooth function:

< Value in each node is approximated by inter-/extrapolating
the values of surrounding nodes.
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‘Discrete’ smoothness:

A sequence of grid functions approximates a smooth function:

< Value in each node is approximated by inter-/extrapolating
the values of surrounding nodes.

Application to initialization problem
F_4 R\ prescribed by macroscopic IC
<
Fiq ® | unspecified & freely disposable

Initialization of ® shall enforce its smooth evolution.
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Concretization of intuitive idea

‘Discrete’ smoothness:

A sequence of grid functions approximates a smooth function:

< Value in each node is approximated by inter-/extrapolating
the values of surrounding nodes.

Application to initialization problem
F_4 R\ prescribed by macroscopic IC
<
Fiq ® | unspecified & freely disposable

Initialization of ® shall enforce its smooth evolution.
Choose ®(0) such that

B(0) éz(o; B(AL), ...,@(nAt))

\ - 7

~
unique interpolation polynomial

degP =n—1
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Setting up modified initial conditions

R(0) = po

Linear extrapolation: { P(0) = 20 (At) — B(2A1)

& | FO) = MM (2B - B2F0) + (7)]

Consistency result:  F(0) = f(9(0) 4 hf(D(0) 4+ O(h?)
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Setting up modified initial conditions

R(0) = po

Linear extrapolation: { P(0) = 20 (At) — B(2A1)

& | FO) = MM (2B - B2F0) + (7)]

Consistency result:  F(0) = f(9(0) 4 hf(D(0) 4+ O(h?)

R(0) = po

Quadratic extrapolation: { P(0) = 3®(At) — 3B (2At) + P(3AL)

|

& | F(0) = M7YIIM (3B - 3%+ E°)F(0) + (7)]

Consistency result: F(0) = f(©(0) + Af(D(0) + R3f(2)(0) + O(h?)
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Setting up modified initial conditions

R(0) = po

Linear extrapolation: { P(0) = 20 (At) — B(2A1)

& | FO) = MM (2B - B2F0) + (7)]

Consistency result:  F(0) = f(9(0) 4 hf(D(0) 4+ O(h?)

R(0) = po

Quadratic extrapolation: { ®(0) = 3B(At) — 3B(2AL) + D(3AL)

|

& | F(0) = M7YIIM (3B - 3%+ E°)F(0) + (7)]

Consistency result: F(0) = f(©(0) + Af(D(0) + R3f(2)(0) + O(h?)

Remark: Nearest neighbor (constant) extrapolation
— condition of original CRS:  F(0) = f(©(0) + O(h)
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Solvability and 15t approach of solution

ICs for F(0) are of type: z=Ax+b < (I —A)x=0> (%)

Ti(z) := 2z — 2°
A:= M 'TIM I, (F) with e.g. { Zy(z) := 3z — 32% + 2°

= T3(z) := 4z — 62° + 42° — 2*

Remarks: Unique solvability of () — theoretic issue to be investigated.
Solvability provided — solution of (%) by whatever method one likes.

Preferably: iterative methods — avoid setting up matrices — easily integrable

within the LB framework
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Solvability and 15t approach of solution

ICs for F(0) are of type: z=Ax+b < (I —A)x=0> (%)

Ti(z) := 2z — 2°
A:= M 'TIM I, (F) with e.g. { Zy(z) := 3z — 32% + 2°

= T3(z) := 4z — 62° + 42° — 2*

Remarks: Unique solvability of () — theoretic issue to be investigated.
Solvability provided — solution of (%) by whatever method one likes.
Preferably: iterative methods — avoid setting up matrices — easily integrable

within the LB framework

Proceeding analogously to original CR — direct iterative solution:

n—1
Tpi1 = Ax, +0 = r, = A"xo + kZOAkb

For arbitrary b, xg: & (A <1
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Sketch illustrating CRS with linear extrapolation
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Spectra |

Spectral plots of A with /inear extrapolation

Numerical test for D1Q2 model algorithm: spec(A) C Dq(0)
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Spectra Il
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2"d approach: stabilization

Improvement: Assume spec(A) C {z € C| Re(z) < 1}

= a = Ax +0b can be solved iteratively. (wellsuited for LBM!)
(%)

Use technique of relaxation motivated by:

o Assumption = spec(A —I) C {z € C| Re(z) < 0} = limeM4=D =0

A—00

o Consider ODE: Lz(X) = (A — I)z(A\) + b
ZU()\) - eA(A_I)CU() + (A — I)_lb )\—>_oo> (I — A)_lb (solution of (%))

e Discretize, e.g., by explicit Euler — iterate until stationarity is reached.
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2"d approach: stabilization

Improvement: Assume spec(A) C {z € C| Re(z) < 1}

= a = Ax +0b can be solved iteratively. (wellsuited for LBM!)
(%)

Use technique of relaxation motivated by:

o Assumption = spec(A —I) C {z € C| Re(z) < 0} = limeM4=D =0

A—00

o Consider ODE: Lz(X) = (A — I)z(A\) + b
ZU()\) - eA(A_I)CU() + (A — I)_lb )\—>_oo> (I — A)_lb (solution of (%))
e Discretize, e.g., by explicit Euler — iterate until stationarity is reached.

Stabilized iteration: choose A\ such that
spec(AN(A—1)) C Di(-1) & o(I+AXNA-1I)) <1

CCn_|_1 — In —|— A)\(A — I)len —|— A)\b convergence — Neumann series
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Summary & Outlook

What has been presented?

e CR initialization scheme may be ineffective

optimal

e Regular expansion <« initialization
& P { smooth }

o IC for F(0): — regular expansion for t = 0 up to k*" order
M1(0)

() | F(0) = MM ZU(E)F(0) + M'M(0) | M(0) = | M

(*) is valid independent of specific evolution operator £ /LBM °

e How to solve (%), especially in LB framework?

direct iteration |1 — w| if small enough

< 3:
Tests (model problem) for & < 3 { relaxed iteration w > 1
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