Automatic Smooth Initialization for LBM

Martin Rheinländer
Arbeitsgruppe Numerik
FB Mathematik \& Statistik
Universität Konstanz

Joint work with
Michael Junk (Konstanz) \& Pieter Van Leemput (Leuven)

Correspondence: populations \leftrightarrow moments conserved moments

$$
\begin{array}{cc}
\mathrm{F}=\left(\mathrm{F}_{1}, \ldots, \mathrm{~F}_{K}\right) & \mathrm{M}=\left(\mathrm{M}_{1}, \ldots, \mathrm{M}_{C}, \ldots, \mathrm{M}_{K}\right) \\
\mathrm{F}=M^{-1} \mathrm{M} & \mathrm{M}=M \mathrm{~F}
\end{array}
$$

Physical ICs \rightarrow (subset of) conserved moments for $t=0$
Standard initialization (equilibrium) \rightarrow oscillating initial layers \odot

Correspondence: populations \leftrightarrow moments conserved moments

$$
\begin{array}{cc}
\mathrm{F}=\left(\mathrm{F}_{1}, \ldots, \mathrm{~F}_{K}\right) & \mathrm{M}=\left({\widetilde{\mathrm{M}} 1, \ldots, \mathrm{M}_{C}}, \ldots, \mathrm{M}_{K}\right) \\
\mathrm{F}=M^{-1} \mathrm{M} & \mathrm{M}=M \mathrm{~F}
\end{array}
$$

Physical ICs \rightarrow (subset of) conserved moments for $t=0$
Standard initialization (equilibrium) \rightarrow oscillating initial layers ©
\Rightarrow Preprocess $F=\left(F_{1}, \ldots, F_{K}\right)$ before starting LB simulation
CR initialization scheme (Mei et al., Van Leemput et al.):
pick some $G(0)$, (e.g. equilibrium determined by $\mathrm{M}_{1}(0), \ldots, \mathrm{M}_{C}(0)$)

repeat

$$
\begin{array}{ll}
\tilde{\mathrm{F}}:=\mathrm{LBM}(\mathrm{G}(n)) & \text { (regular LB time step) } \\
\tilde{\mathrm{M}}:=M \tilde{\mathrm{G}} & \text { (traform to moments) } \\
\mathrm{M}(n+1) \leftarrow \tilde{\mathrm{M}} & \text { (constraint: reset known moments) } \\
\mathrm{G}(n+1)=M^{-1} \mathrm{M}(n+1) & \text { (convert moments to populations) } \\
\text { until }(\|\mathrm{M}(n+1)-\mathrm{M}(n)\|<T O L) & \\
\text { initialize LB simulation by setting } \mathrm{F}(0)=\mathrm{G}(\infty)
\end{array}
$$

D1Q2 algorithm solving IVP: $\left\{\begin{array}{c}\partial_{t} \rho+a \partial_{x} \rho=0 \\ \rho(0, \cdot)=\rho_{0}\end{array}\right.$

$$
\left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{F_{-1}}{F_{+1}}=\binom{R}{\Phi} \begin{aligned}
& \text { mass moment (conserved) } \\
& \text { flux moment }
\end{aligned}
$$

Initialization of moments: $\left\{\begin{array}{l}R(0)=\rho_{0} \\ \Phi(0)=?\end{array} \Leftarrow R \approx \rho\right.$

D1Q2 algorithm solving IVP: $\left\{\begin{array}{r}\partial_{t} \rho+a \partial_{x} \rho=0 \\ \rho(0, \cdot)=\rho_{0}\end{array}\right.$

$$
\begin{aligned}
& \left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{\mathrm{F}_{-1}}{\mathrm{~F}_{+1}}=\binom{R}{\Phi} \begin{array}{l}
\text { mass moment (conserved) } \\
\text { flux moment }
\end{array} \\
& \text { Initialization of moments: }\left\{\begin{array}{l}
R(0)=\rho_{0} \\
\Phi(0)=?
\end{array} \Leftarrow R \approx \rho\right.
\end{aligned}
$$

Error $R-\rho$ plotted versus iteration

Init. by equilibrium

$$
\binom{F_{-1}(0)}{\mathrm{F}_{+1}(0)}=\frac{1}{2}\binom{1-a}{1+a} \rho_{0}
$$

D1Q2 algorithm solving IVP: $\left\{\begin{array}{r}\partial_{t} \rho+a \partial_{x} \rho=0 \\ \rho(0, \cdot)=\rho_{0}\end{array}\right.$

$$
\begin{aligned}
& \left(\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{\mathrm{F}_{-1}}{\mathrm{~F}_{+1}}=\binom{R}{\Phi} \begin{array}{l}
\text { mass moment (conserved) } \\
\text { flux moment }
\end{array} \\
& \text { Initialization of moments: }\left\{\begin{array}{l}
R(0)=\rho_{0} \\
\Phi(0)=?
\end{array} \Leftarrow R \approx \rho\right.
\end{aligned}
$$

Error $R-\rho$ plotted versus iteration

Init. by equilibrium

$$
\binom{\mathrm{F}_{-1}(0)}{\mathrm{F}_{+1}(0)}=\frac{1}{2}\binom{1-a}{1+a} \rho_{0}
$$

Initialization by constrained runs scheme

Observation: Oscillations (initial layer) persist!

What does the CRS yield? \rightarrow fixed point iteration for $F(0)$:

$$
\overbrace{G(n+1)}^{G(\infty)=F(0)}=M^{-1}[\Pi M \underbrace{E \overbrace{G(n)}^{G(\infty)=F(0)}}_{\text {LB step }}+\binom{\rho_{0}}{0}], \quad \Pi\binom{x}{y}:=\binom{0}{y}
$$

What does the CRS yield? \rightarrow fixed point iteration for $F(0)$:

$$
\overbrace{\mathrm{G}(n+1)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}=M^{-1}[\Pi M \underbrace{E \overbrace{\mathrm{G}(n)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}}_{\text {LB step }}+\binom{\rho_{0}}{0}], \quad \Pi\binom{x}{y}:=\binom{0}{y}
$$

Resulting regular expansion for $\mathrm{F}(0)$ w.r.t. grid spacing h :

$$
\mathrm{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h \partial_{x} \rho_{0} \mathrm{~s}+\mathrm{O}\left(h^{2}\right)
$$

What does the CRS yield? \rightarrow fixed point iteration for $F(0)$:

$$
\overbrace{\mathrm{G}(n+1)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}=M^{-1}[\Pi M \underbrace{E \overbrace{\mathrm{G}(n)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}}_{\text {LB step }}+\binom{\rho_{0}}{0}], \quad \Pi\binom{x}{y}:=\binom{0}{y}
$$

Resulting regular expansion for $\mathrm{F}(0)$ w.r.t. grid spacing h :

$$
\mathrm{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h \partial_{x} \rho_{0} \mathrm{~s}+\mathrm{O}\left(h^{2}\right)
$$

What does the LBA require to evolve smoothly? (regular expansion of LBA)

$$
\mathrm{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h\left(1-a^{2}\right) \partial_{x} \rho_{0} \mathbf{s}+\mathrm{O}\left(h^{2}\right)
$$

What does the CRS yield? \rightarrow fixed point iteration for $F(0)$:

$$
\overbrace{\mathrm{G}(n+1)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}=M^{-1}[\Pi M \underbrace{E \overbrace{\mathrm{G}(n)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}}_{\text {LB step }}+\binom{\rho_{0}}{0}], \quad \Pi\binom{x}{y}:=\binom{0}{y}
$$

Resulting regular expansion for $\mathrm{F}(0)$ w.r.t. grid spacing h :

$$
\mathrm{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h \partial_{x} \rho_{0} \mathrm{~s}+\mathrm{O}\left(h^{2}\right)
$$

What does the LBA require to evolve smoothly? (regular expansion of LBA)

$$
\mathrm{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h\left(1-a^{2}\right) \partial_{x} \rho_{0} \mathbf{s}+\mathrm{O}\left(h^{2}\right)
$$

What does the CRS yield? \rightarrow fixed point iteration for $F(0)$:

$$
\overbrace{\mathrm{G}(n+1)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}=M^{-1}[\Pi M \underbrace{E \overbrace{\mathrm{G}(n)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}}_{\text {LB step }}+\binom{\rho_{0}}{0}], \quad \Pi\binom{x}{y}:=\binom{0}{y}
$$

Resulting regular expansion for $\mathrm{F}(0)$ w.r.t. grid spacing h :

$$
\mathrm{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h \partial_{x} \rho_{0} \mathrm{~s}+\mathrm{O}\left(h^{2}\right)
$$

What does the LBA require to evolve smoothly? (regular expansion of LBA)

$$
\mathbf{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h\left(1-a^{2}\right) \partial_{x} \rho_{0} \mathbf{s}+\mathrm{O}\left(h^{2}\right)
$$

Similar oscillations in Φ
CRS versus analytic init.
Effect of CRS: $\Phi(0)=\Phi(\Delta t)$

What does the CRS yield? \rightarrow fixed point iteration for $F(0)$:

$$
\overbrace{\mathrm{G}(n+1)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}=M^{-1}[\Pi M \underbrace{E \overbrace{\mathrm{G}(n)}^{\mathrm{G}(\infty)=\mathrm{F}(0)}}_{\text {LB step }}+\binom{\rho_{0}}{0}], \quad \Pi\binom{x}{y}:=\binom{0}{y}
$$

Resulting regular expansion for $\mathrm{F}(0)$ w.r.t. grid spacing h :

$$
\mathrm{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h \partial_{x} \rho_{0} \mathbf{s}+\mathrm{O}\left(h^{2}\right)
$$

What does the LBA require to evolve smoothly? (regular expansion of LBA)

$$
\mathbf{F}(0)=\frac{1}{2}(1+a \mathbf{s}) \rho_{0}-\frac{1}{2 \omega} h\left(1-a^{2}\right) \partial_{x} \rho_{0} \mathbf{s}+\mathrm{O}\left(h^{2}\right)
$$

Similar oscillations in Φ
Effect of CRS: $\Phi(0)=\Phi(\Delta t)$

Oscillations not visible in R

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal $\stackrel{?}{=}$ minimized error, maximal 'smoothness'

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal $\stackrel{?}{=}$ minimized error, maximal 'smoothness'

$$
\mathrm{F}(0)=\mathbf{f}^{(0)}(0)+h \mathbf{f}^{(1)}(0)+h^{2} \mathbf{f}^{(2)}(0)+\ldots
$$

where in case of the model LBA $\left\{\begin{array}{l}f^{(0)}(0)=\frac{1}{2}(1+a s) \rho_{0} \\ f^{(1)}(0)=-\frac{1}{2 \omega}\left(1-a^{2}\right) s \partial_{x \rho_{0}} \\ f^{(2)}(0)=-\frac{1}{\omega}\left(\frac{1}{\omega}-\frac{1}{2}\right)\left(1-a^{2}\right) a s \partial_{x}^{2} \rho_{0}\end{array}\right.$
Difficulty: Generally $f^{(1)}(0), f^{(2)}(0), \ldots$ complicated to ascertain!
Request for initializer (sort of iterative scheme fitting into LB framework) building up regular expansion automatically

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal $\stackrel{?}{=}$ minimized error, maximal 'smoothness'

$$
\mathrm{F}(0)=\mathbf{f}^{(0)}(0)+h \mathbf{f}^{(1)}(0)+h^{2} \mathbf{f}^{(2)}(0)+\ldots
$$

where in case of the model LBA $\left\{\begin{array}{l}f^{(0)}(0)=\frac{1}{2}(1+a s) \rho_{0} \\ f^{(1)}(0)=-\frac{1}{2 \omega}\left(1-a^{2}\right) \mathrm{s} \partial x \rho_{0} \\ f^{(2)}(0)=-\frac{1}{\omega}\left(\frac{1}{\omega}-\frac{1}{2}\right)\left(1-a^{2}\right) a s \partial_{x}^{2} \rho_{0}\end{array}\right.$
Difficulty: Generally $\boldsymbol{f}^{(1)}(0), \boldsymbol{f}^{(2)}(0), \ldots$ complicated to ascertain!
Request for initializer (sort of iterative scheme fitting into LB framework) building up regular expansion automatically

Hypothesis II: $\quad \rightarrow$ practical characterization of regular expansion

$$
\text { Optimal initialization } \Leftrightarrow \text { 'smooth' initial behavior. }
$$

‘Discrete’ smoothness:

A sequence of grid functions approximates a smooth function:
\Leftrightarrow Value in each node is approximated by inter-/extrapolating the values of surrounding nodes.

‘Discrete’ smoothness:

A sequence of grid functions approximates a smooth function:
\Leftrightarrow Value in each node is approximated by inter-/extrapolating the values of surrounding nodes.

Application to initialization problem

$$
\binom{\mathrm{F}_{-1}}{\mathrm{~F}_{+1}} \quad \leftrightarrow \quad\binom{R}{\Phi} \begin{aligned}
& \text { prescribed by macroscopic IC } \\
& \text { unspecified \& freely disposable }
\end{aligned}
$$

Initialization of Φ shall enforce its smooth evolution.

‘Discrete’ smoothness:

A sequence of grid functions approximates a smooth function:
\Leftrightarrow Value in each node is approximated by inter-/extrapolating the values of surrounding nodes.

Application to initialization problem

$$
\binom{\mathrm{F}_{-1}}{\mathrm{~F}_{+1}} \quad \leftrightarrow \quad\binom{R}{\Phi} \begin{aligned}
& \text { prescribed by macroscopic IC } \\
& \text { unspecified \& freely disposable }
\end{aligned}
$$

Initialization of Φ shall enforce its smooth evolution.
Choose $\Phi(0)$ such that

$$
\Phi(0) \stackrel{!}{=} \underbrace{\mathcal{I}(0 ; \Phi(\Delta t), \ldots, \Phi(n \Delta t))}_{\text {unique interpolation polynomial }}
$$

Linear extrapolation: $\left\{\begin{array}{l}R(0)=\rho_{0} \\ \Phi(0)=2 \Phi(\Delta t)-\Phi(2 \Delta t)\end{array}\right.$

$$
\Leftrightarrow \quad \mathrm{F}(0) \stackrel{!}{=} M^{-1}\left[\Pi M\left(2 E-E^{2}\right) \mathrm{F}(0)+\binom{\rho_{0}}{0}\right]
$$

Consistency result: $\quad \mathrm{F}(0)=\mathrm{f}^{(0)}(0)+h \boldsymbol{f}^{(1)}(0)+\mathrm{O}\left(h^{2}\right)$

Linear extrapolation: $\left\{\begin{array}{l}R(0)=\rho_{0} \\ \Phi(0)=2 \Phi(\Delta t)-\Phi(2 \Delta t)\end{array}\right.$

$$
\Leftrightarrow \quad \mathrm{F}(0) \stackrel{!}{=} M^{-1}\left[\Pi M\left(2 E-E^{2}\right) \mathrm{F}(0)+\binom{\rho_{0}}{0}\right]
$$

Consistency result: $\quad \mathrm{F}(0)=\mathrm{f}^{(0)}(0)+h \boldsymbol{f}^{(1)}(0)+\mathrm{O}\left(h^{2}\right)$

Quadratic extrapolation: $\left\{\begin{array}{l}R(0)=\rho_{0} \\ \Phi(0)=3 \Phi(\Delta t)-3 \Phi(2 \Delta t)+\Phi(3 \Delta t)\end{array}\right.$

$$
\Leftrightarrow \quad \mathrm{F}(0) \stackrel{!}{=} M^{-1}\left[\Pi M\left(3 E-3 E^{2}+E^{3}\right) \mathrm{F}(0)+\binom{\rho_{0}}{0}\right]
$$

Consistency result: $\quad \mathrm{F}(0)=\boldsymbol{f}^{(0)}(0)+h \boldsymbol{f}^{(1)}(0)+h^{3} \boldsymbol{f}^{(2)}(0)+\mathrm{O}\left(h^{3}\right)$

Linear extrapolation: $\left\{\begin{array}{l}R(0)=\rho_{0} \\ \Phi(0)=2 \Phi(\Delta t)-\Phi(2 \Delta t)\end{array}\right.$

$$
\Leftrightarrow \quad \mathrm{F}(0) \stackrel{!}{=} M^{-1}\left[\Pi M\left(2 E-E^{2}\right) \mathrm{F}(0)+\binom{\rho_{0}}{0}\right]
$$

Consistency result: $\quad \mathrm{F}(0)=\mathrm{f}^{(0)}(0)+h \boldsymbol{f}^{(1)}(0)+\mathrm{O}\left(h^{2}\right)$

Quadratic extrapolation: $\left\{\begin{array}{l}R(0)=\rho_{0} \\ \Phi(0)=3 \Phi(\Delta t)-3 \Phi(2 \Delta t)+\Phi(3 \Delta t)\end{array}\right.$

$$
\Leftrightarrow \quad \mathrm{F}(0) \stackrel{!}{=} M^{-1}\left[\Pi M\left(3 E-3 E^{2}+E^{3}\right) \mathrm{F}(0)+\binom{\rho_{0}}{0}\right]
$$

Consistency result: $\quad \mathrm{F}(0)=\mathbf{f}^{(0)}(0)+h \boldsymbol{f}^{(1)}(0)+h^{3} \boldsymbol{f}^{(2)}(0)+\mathrm{O}\left(h^{3}\right)$

Remark: Nearest neighbor (constant) extrapolation
\rightarrow condition of original CRS: $\quad \mathrm{F}(0)=\mathrm{f}^{(0)}(0)+\mathrm{O}(h)$

ICs for $\mathrm{F}(0)$ are of type: $\quad x=A x+b \quad \Leftrightarrow \quad(I-A) x=b(*)$

$$
A:=\underbrace{M^{-1} \Pi M}_{=: \tilde{\Pi}} \mathcal{I}_{k}(E) \quad \text { with e.g. } \quad\left\{\begin{array}{l}
\mathcal{I}_{1}(z):=2 z-z^{2} \\
\mathcal{I}_{2}(z):=3 z-3 z^{2}+z^{3} \\
\mathcal{I}_{3}(z):=4 z-6 z^{2}+4 z^{3}-z^{4}
\end{array}\right.
$$

Remarks: Unique solvability of $(*) \rightarrow$ theoretic issue to be investigated.
Solvability provided \rightarrow solution of $(*)$ by whatever method one likes.
Preferably: iterative methods \rightarrow avoid setting up matrices \rightarrow easily integrable within the LB framework

ICs for $\mathrm{F}(0)$ are of type: $\quad x=A x+b \quad \Leftrightarrow \quad(I-A) x=b(*)$

$$
A:=\underbrace{M^{-1} \Pi M}_{=: \tilde{\Pi}} \mathcal{I}_{k}(E) \quad \text { with e.g. } \quad\left\{\begin{array}{l}
\mathcal{I}_{1}(z):=2 z-z^{2} \\
\mathcal{I}_{2}(z):=3 z-3 z^{2}+z^{3} \\
\mathcal{I}_{3}(z):=4 z-6 z^{2}+4 z^{3}-z^{4}
\end{array}\right.
$$

Remarks: Unique solvability of $(*) \rightarrow$ theoretic issue to be investigated.
Solvability provided \rightarrow solution of $(*)$ by whatever method one likes.
Preferably: iterative methods \rightarrow avoid setting up matrices \rightarrow easily integrable within the LB framework

Proceeding analogously to original $\mathrm{CR} \rightarrow$ direct iterative solution:

$$
\begin{aligned}
& \qquad \begin{array}{l}
x_{n+1}=A x_{n}+b
\end{array} \Rightarrow \quad x_{n}=A^{n} x_{0}+\sum_{k=0}^{n-1} A^{k} b \\
& \text { For arbitrary } b, x_{0}: \quad x_{n} \xrightarrow{n \rightarrow \infty} x \quad \Leftrightarrow \quad \varrho(A)<1
\end{aligned}
$$

Spectral plots of A with linear extrapolation $\quad(\circ a=0.95, \cdot a=0.1)$

Numerical test for D1Q2 model algorithm: $\operatorname{spec}(A) \subset \overline{D_{1}(0)} \quad$ for $\omega \in[0.586,1.414]$

Spectral plots of A with cubic extrapolation $\quad(\circ a=0.95, \cdot a=0.1)$

Improvement: Assume $\operatorname{spec}(A) \subset\{z \in \mathbb{C} \mid \operatorname{Re}(z)<1\}$

$$
\Rightarrow \underbrace{x=A x+b}_{(\star \star)} \text { can be solved iteratively. (Well-suited for LBM!) }
$$

Use technique of relaxation motivated by:

- Assumption $\Rightarrow \operatorname{spec}(A-I) \subset\{z \in \mathbb{C} \mid \operatorname{Re}(z)<0\} \Rightarrow \lim _{\lambda \rightarrow \infty} \mathrm{e}^{\lambda(A-I)}=0$
- Consider ODE: $\frac{\mathrm{d}}{\mathrm{d} \lambda} x(\lambda)=(A-I) x(\lambda)+b$

$$
\left.x(\lambda)=\mathrm{e}^{\lambda(A-I)} x_{0}+(A-I)^{-1} b \quad \xrightarrow{\lambda \rightarrow \infty} \quad(I-A)^{-1} b \quad \text { (solution of }(\star \star)\right)
$$

- Discretize, e.g., by explicit Euler \rightarrow iterate until stationarity is reached.

Improvement: Assume $\operatorname{spec}(A) \subset\{z \in \mathbb{C} \mid \operatorname{Re}(z)<1\}$

$$
\Rightarrow \quad \underbrace{x=A x+b}_{(\star \star)} \text { can be solved iteratively. (Well-suited for LBM!) }
$$

Use technique of relaxation motivated by:

- Assumption $\Rightarrow \operatorname{spec}(A-I) \subset\{z \in \mathbb{C} \mid \operatorname{Re}(z)<0\} \Rightarrow \lim _{\lambda \rightarrow \infty} \mathrm{e}^{\lambda(A-I)}=0$
- Consider ODE: $\frac{\mathrm{d}}{\mathrm{d} \lambda} x(\lambda)=(A-I) x(\lambda)+b$

$$
\left.x(\lambda)=\mathrm{e}^{\lambda(A-I)} x_{0}+(A-I)^{-1} b \quad \xrightarrow{\lambda \rightarrow \infty} \quad(I-A)^{-1} b \quad \text { (solution of }(* *)\right)
$$

- Discretize, e.g., by explicit Euler \rightarrow iterate until stationarity is reached.

Stabilized iteration: choose $\Delta \lambda$ such that

$$
\begin{gathered}
\operatorname{spec}(\Delta \lambda(A-I)) \subset D_{1}(-1) \quad \Leftrightarrow \quad \varrho(I+\Delta \lambda(A-I))<1 \\
x_{n+1}=x_{n}+\Delta \lambda(A-I) x_{n}+\Delta \lambda b \quad \text { convergence } \rightarrow \text { Neumann series }
\end{gathered}
$$

What has been presented?

- CR initialization scheme may be ineffective
- Regular expansion $\leftrightarrow\left\{\begin{array}{l}\text { optimal } \\ \text { smooth }\end{array}\right\}$ initialization
- IC for $\mathrm{F}(0): \rightarrow$ regular expansion for $t=0$ up to $k^{\text {th }}$ order
(*) $\mathrm{F}(0)=M^{-1} \Pi M \mathcal{I}_{k}(E) \mathrm{F}(0)+M^{-1} \tilde{\mathrm{M}}(0)$
(*) is valid independent of specific evolution operator $E /$ LBM

- How to solve (*), especially in LB framework?

Tests (model problem) for $k \leq 3: \begin{cases}\text { direct iteration } & |1-\omega| \text { if small enough } \\ \text { relaxed iteration } & \omega \geq 1\end{cases}$

