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Initialization à la Constrained Runs

Correspondence: populations ↔ moments

F = (F1, ...,FK) M = (

conserved moments
︷ ︸︸ ︷

M1, ...,MC , ...,MK)

F = M−1M M = MF

Physical ICs → (subset of) conserved moments for t = 0

Standard initialization (equilibrium) → oscillating initial layers /

⇒ Preprocess F = (F1, ...,FK) before starting LB simulation

CR initialization scheme (Mei et al., Van Leemput et al.):

pick some G(0), (e.g. equilibrium determined by M1(0), ..., MC(0))

repeat

F̃ := LBM
(
G(n)

)
(regular LB time step)

M̃ := M G̃ (traform to moments)

M(n + 1) ← M̃ (constraint: reset known moments)

G(n + 1) = M−1M(n + 1) (convert moments to populations)

until ( ‖M(n + 1)−M(n)‖ < TOL )

initialize LB simulation by setting F(0) = G(∞)
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Application to model problem

D1Q2 algorithm solving IVP:

{
∂tρ + a∂xρ = 0

ρ(0, ·) = ρ0

„

1 1

−1 1

« „

F−1

F+1

«

=

„

R

Φ

«

mass moment (conserved)

flux moment

Initialization of moments:

(

R(0) = ρ0 ⇐ R ≈ ρ

Φ(0) = ?

Error R− ρ plotted versus iteration

Init. by equilibrium
“

F−1(0)

F+1(0)

”

= 1
2

“

1−a

1+a

”

ρ0

Initialization by

constrained runs scheme

Observation: Oscillations (initial layer) persist!
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Analysis of failure

What does the CRS yield? → fixed point iteration for F(0):

G(∞)=F(0)
︷ ︸︸ ︷

G(n + 1) = M−1
[

Π M E

G(∞)=F(0)
︷ ︸︸ ︷

G(n)
︸ ︷︷ ︸

LB step

+
(
ρ0
0

)]

, Π
(
x
y

)
:=

(
0
y

)

Resulting regular expansion for F(0) w.r.t. grid spacing h:

F(0) = 1
2(1 + as)ρ0 −

1
2ω

h∂xρ0s + O(h2)

What does the LBA require to evolve smoothly? (regular expansion of LBA)

F(0) = 1
2(1 + as)ρ0 −

1
2ω

h(1− a2)∂xρ0s + O(h2)

Comparison of error R − ρ

CRS versus analytic init.

Similar oscillations in Φ

Effect of CRS: Φ(0) = Φ(∆t)
Oscillations not visible in R
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A different perspective – heuristic reasoning

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal
?
= minimized error, maximal ‘smoothness’

F(0) = f(0)(0) + hf(1)(0) + h2f(2)(0) + ...

where in case of the model LBA

8

>

>

>

<

>

>

>

:

f(0)(0) = 1
2(1 + as) ρ0

f(1)(0) = − 1
2ω

(1 − a2)s ∂xρ0

f(2)(0) = − 1
ω ( 1

ω − 1
2)(1 − a2)as ∂2

xρ0

Difficulty: Generally f(1)(0), f(2)(0), ... complicated to ascertain!

Request for initializer (sort of iterative scheme fitting into LB framework)

building up regular expansion automatically

Hypothesis II: → practical characterization of regular expansion

Optimal initialization ⇔ ‘smooth’ initial behavior.

13



A different perspective – heuristic reasoning

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal
?
= minimized error, maximal ‘smoothness’

F(0) = f(0)(0) + hf(1)(0) + h2f(2)(0) + ...

where in case of the model LBA

8

>

>

>

<

>

>

>

:

f(0)(0) = 1
2(1 + as) ρ0

f(1)(0) = − 1
2ω

(1 − a2)s ∂xρ0

f(2)(0) = − 1
ω( 1

ω − 1
2)(1 − a2)as ∂2

xρ0

Difficulty: Generally f(1)(0), f(2)(0), ... complicated to ascertain!

Request for initializer (sort of iterative scheme fitting into LB framework)

building up regular expansion automatically

Hypothesis II: → practical characterization of regular expansion

Optimal initialization ⇔ ‘smooth’ initial behavior.

14



A different perspective – heuristic reasoning

Hypothesis I:

Optimal initialization corresponds to regular expansion.

Optimal
?
= minimized error, maximal ‘smoothness’

F(0) = f(0)(0) + hf(1)(0) + h2f(2)(0) + ...

where in case of the model LBA

8

>

>

>

<

>

>

>

:

f(0)(0) = 1
2(1 + as) ρ0

f(1)(0) = − 1
2ω

(1 − a2)s ∂xρ0

f(2)(0) = − 1
ω( 1

ω − 1
2)(1 − a2)as ∂2

xρ0

Difficulty: Generally f(1)(0), f(2)(0), ... complicated to ascertain!

Request for initializer (sort of iterative scheme fitting into LB framework)

building up regular expansion automatically

Hypothesis II: → practical characterization of regular expansion

Optimal initialization ⇔ ‘smooth’ initial behavior.

15



Abstract setting

     family of 
discrete

systems
dynamical

continuous
dynamical

system
smooth  evolution

quasi−smooth
evolut. modes

purely discrete
evolut. modes

shall  approximate
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Concretization of intuitive idea

‘Discrete’ smoothness:

A sequence of grid functions approximates a smooth function:

⇔ Value in each node is approximated by inter-/extrapolating
the values of surrounding nodes.

Application to initialization problem
(

F−1

F+1

)

↔

(
R

Φ

)
prescribed by macroscopic IC

unspecified & freely disposable

Initialization of Φ shall enforce its smooth evolution.

Choose Φ(0) such that

Φ(0)
!
= I

(

0; Φ(∆t), ...,Φ(n∆t)
)

︸ ︷︷ ︸
unique interpolation polynomial

degP = n−1

PSfrag replacements

Φ(0)
R(0)

ρ0
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Setting up modified initial conditions

Linear extrapolation:


R(0) = ρ0

Φ(0) = 2Φ(∆t) − Φ(2∆t)

⇔ F(0)
!
= M−1

[

Π M
(
2E −E2

)
F(0) +

(
ρ0
0

)]

Consistency result: F(0) = f(0)(0) + hf(1)(0) + O(h2)

Quadratic extrapolation:


R(0) = ρ0

Φ(0) = 3Φ(∆t) − 3Φ(2∆t) + Φ(3∆t)

⇔ F(0)
!
= M−1

[

Π M
(
3E − 3E2 + E3

)
F(0) +

(
ρ0
0

)]

Consistency result: F(0) = f(0)(0) + hf(1)(0) + h3f(2)(0) + O(h3)

Remark: Nearest neighbor (constant) extrapolation

→ condition of original CRS: F(0) = f(0)(0) + O(h)
20
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Solvability and 1st approach of solution

ICs for F(0) are of type: x = Ax + b ⇔ (I − A)x = b (∗)

A := M−1ΠM
︸ ︷︷ ︸

=:Π̃

Ik(E) with e.g.

{
I1(z) := 2z − z2

I2(z) := 3z − 3z2 + z3

I3(z) := 4z − 6z2 + 4z3 − z4

Remarks: Unique solvability of (∗) → theoretic issue to be investigated.

Solvability provided → solution of (∗) by whatever method one likes.

Preferably: iterative methods → avoid setting up matrices → easily integrable

within the LB framework

Proceeding analogously to original CR → direct iterative solution:

xn+1 = Axn + b ⇒ xn = Anx0 +
n−1∑

k=0

Akb

For arbitrary b, x0:
xn

n→∞
−−−−→ x

x=Ax+b
⇔ %(A) < 1

23
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Sketch illustrating CRS with linear extrapolation

PSfrag replacements

Φ(0)

R(0)
ρ0
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Spectra I

Spectral plots of A with linear extrapolation (◦◦◦ a = 0.95, ········· a = 0.1)

Numerical test for D1Q2 model algorithm: spec(A) ⊂ D1(0)spec(A) ⊂ D1(0)spec(A) ⊂ D1(0) for ω ∈ [0.586, 1.414]ω ∈ [0.586, 1.414]ω ∈ [0.586, 1.414]
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Spectra II

Spectral plots of A with cubic extrapolation (◦◦◦ a = 0.95, ········· a = 0.1)
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2nd approach: stabilization

Improvement: Assume spec(A) ⊂ {z ∈ C| Re(z) < 1}

⇒ x = Ax + b
︸ ︷︷ ︸

(??)

can be solved iteratively. (Well-suited for LBM!)

Use technique of relaxation motivated by:

• Assumption ⇒ spec(A − I) ⊂ {z ∈ C| Re(z) < 0} ⇒ lim
λ→∞

eλ(A−I) = 0

• Consider ODE: d
dλ

x(λ) = (A − I)x(λ) + b

x(λ) = e
λ(A−I)

x0 + (A − I)
−1

b
λ→∞
−−−→ (I − A)

−1
b (solution of (??))

• Discretize, e.g., by explicit Euler → iterate until stationarity is reached.

Stabilized iteration: choose ∆λ such that

spec
(
∆λ(A− I)

)
⊂ D1(−1) ⇔ %

(
I + ∆λ(A− I)

)
< 1

xn+1 = xn + ∆λ(A− I)xn + ∆λb convergence → Neumann series
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Summary & Outlook

What has been presented?

• CR initialization scheme may be ineffective

• Regular expansion ↔

{
optimal
smooth

}

initialization

• IC for F(0): → regular expansion for t = 0 up to kth order

(∗) F(0) = M−1ΠM Ik(E)F(0) + M−1M̃(0) M̃(0) =







M1(0)
...

Mb(0)
0
...

0







(∗) is valid independent of specific evolution operator E/LBM

• How to solve (∗), especially in LB framework?

Tests (model problem) for k ≤ 3:



direct iteration |1 − ω| if small enough

relaxed iteration ω ≥ 1
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