Analysis of Lattice-Boltzmann Methods

Asymptotic and Numeric Investigation of a Singularly Perturbed System

Martin Rheinländer

FB Mathematik & Statistik, AG Numerik Universität Konstanz

8. Mai 2007

Vortrag im Rahmen des Promotionsverfahrens

- Part I: Introduction
- General concept & context of LBM
- Why? Specific motivation of my work
- What? Objects of analysis
 - \rightarrow Derivation of model algorithms
- How? Applied methodology

- Part I: Introduction
- General concept & context of LBM
- Why? Specific motivation of my work
- What? Objects of analysis
 - \rightarrow Derivation of model algorithms
- How? Applied methodology

• Part II: Results

......

- Exemplary singular limit: convergence & arising of initial layers
- Stability & CFL condition for an LBA

What are Lattice-Boltzmann Methods (LBM)?

- Numeric approach for computing solutions of certain (evolutionary) PDEs.
 - \Rightarrow Alternative to traditional schemes: FDM, FEM and FVM.

• Key features:

- + Indirect discretization realizing a mesoscopic ansatz (additional variables simplify numerics).
 ⇒ Connection to target equation is a priori not obvious.
- + Implemention of relatively low complexity \rightarrow well suited for parallelization.
- Restrictions: explicit scheme, regular grids (adaptivity?), memory intensive, ...

• Main applications:

- Various engineering problems with *fluid-dynamic* background.

- Macroscopic view: continuum hypothesis
 - $\partial_t \rho + \mathbf{u} \cdot \nabla \rho = 0, \ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p,...$

• Macroscopic view: continuum hypothesis • Microscopic view: particle dynamics $\partial_t \rho + \mathbf{u} \cdot \nabla \rho = 0, \ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p_{,...}$ • Microscopic view: particle dynamics $\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}_i = \nabla_{\mathbf{p}_i} H, \ \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{p}_i = -\nabla_{\mathbf{x}_i} H$

• Macroscopic view: continuum hypothesis • Microscopic view: particle dynamics $\partial_t \rho + \mathbf{u} \cdot \nabla \rho = 0, \ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p_{,...}$ • Microscopic view: particle dynamics $\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}_i = \nabla_{\mathbf{p}_i} H, \ \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{p}_i = -\nabla_{\mathbf{x}_i} H$

Observation: Complex macroscopic process \rightarrow microscopically rather simple dynamics.

Promising perspective for simulations!? \rightarrow Yes, **but** huge number of particles.

• Macroscopic view: continuum hypothesis • Microscopic view: particle dynamics $\partial_t \rho + \mathbf{u} \cdot \nabla \rho = 0, \ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{1}{\rho} \nabla p,...$ • Microscopic view: particle dynamics $\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{x}_i = \nabla_{\mathbf{p}_i} H, \ \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{p}_i = -\nabla_{\mathbf{x}_i} H$

Observation: Complex macroscopic process \rightarrow microscopically rather simple dynamics.

Promising perspective for simulations!? \rightarrow Yes, **but** huge number of particles.

- **Mesoscopic approach:** further simplifications
- Shrinkage of velocity space: $\mathbb{R}^n \to \mathcal{S}$ (Finite velocity Boltzmann equations)
- Discrete dynamical systems \rightarrow LBM

• Discrete velocity set S:

D2P9 D2P5 D2P4 D1P3 D1P2

• Discrete velocity set S:

+ D2P4 D1P3 D1P2 D2P5 D2P9

• Primary variables: $F(t, \mathbf{x}) = [F_s(t, \mathbf{x})]_{s \in S} \begin{cases} \text{densities of fictitious particles} \\ \text{grid function with } \#S \text{ components} \end{cases}$

- **Discrete velocity set** S:
- **D2P4** D1P3 D1P2 D2P9 D2P5
- Primary variables: $F(t, \mathbf{x}) = [F_s(t, \mathbf{x})]_{s \in S} \begin{cases} \text{densities of fictitious particles} \\ \text{grid function with } \#S \text{ components} \end{cases}$

- **Discrete velocity set** S: D2P9
 - D1P3 D2P5 **D2P4** D1P2
- Primary variables: $F(t, \mathbf{x}) = [F_s(t, \mathbf{x})]_{s \in S} \begin{cases} \text{densities of fictitious particles} \\ \text{grid function with } \#S \text{ components} \end{cases}$

Moments approximate solution of Navier-Stokes eqn. (target eqn.):

$$R(t,\mathbf{x}) = \langle \mathsf{F}(t,\mathbf{x}), 1 \rangle = \sum_{\mathbf{s} \in \mathcal{S}} \mathsf{F}_{\mathbf{s}}(t,\mathbf{x}), \qquad U_x(t,\mathbf{x}) = \langle \mathsf{F}(t,\mathbf{x}), \mathsf{s}_x \rangle$$

Simultaneous (coupled) limit

• Scaled finite velocity Boltzmann equation (diffusive scaling):

FVBE(
$$\epsilon$$
): $\partial_t f + \frac{1}{\epsilon} \mathbf{s} \cdot \nabla f = \frac{1}{\epsilon^2} J_{\epsilon} f$

Incipient questions: consistency (traditional approach via Chapman-Enskog expansion) convergence (requires stability)

further properties (multiple time scales, scaling, numerical layers)

Taylor-Vortex: Relative L1 Error of U Taylor-Vortex: Stream-Lines at t=0 0.035 20x20 grid 40x40 grid - 80x80 grid 0.03 0.025 0.02 Error 0.015 0.01 0.005 20 40 60 Time 80 100 120 **Example 2:** Embedding into context of further problems: e.g. grid coupling Drieven Cavity Re=40 Level Lines of x- resp. y-velocity (blue/red) Driven Cavity Re=40 ds=1/16, 1/8, 1/4 normalized velocity field ********

10

9

8

Part I – Introduction

5

Example 1: Observation of an initial layer

(simulating decaying eigenmode of Stokes operator)

- Wanted: 1D LB algorithm \subset 2D LB algorithm.
- **Reduction:** D2P9 algorithm \rightarrow D1P3 algorithm.

- Wanted: 1D LB algorithm \subset 2D LB algorithm.
- **Reduction:** D2P9 algorithm \rightarrow D1P3 algorithm.
- Mimick reduction of the INS equation under translational invariance, e.g.: $\partial_x \mathbf{u} = 0$.

Parallel shear flows (*Poiseuille* flow)

• Fact: If
$$\mathbf{u}_0(x,y) = \begin{pmatrix} u_0(y) \\ 0 \end{pmatrix} \land \mathbf{q}(t,x,y) = \begin{pmatrix} q(t,y) \\ 0 \end{pmatrix}$$
 then $\mathbf{u}(t,x,y) = \begin{pmatrix} u(t,y) \\ 0 \end{pmatrix}$.

Furthermore: 2D incompressible Navier-Stokes equation \longrightarrow 1D diffusion equation.

$$\begin{array}{c} \nabla \cdot \mathbf{u} = 0\\ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \nabla \mathbf{u} = -\nabla p + \mathbf{q} \end{array} \right\} \quad \longrightarrow \quad \partial_t u - \nu \partial_x^2 u = q$$

- Wanted: 1D LB algorithm \subset 2D LB algorithm.
- **Reduction:** D2P9 algorithm \rightarrow D1P3 algorithm.
- Mimick reduction of the INS equation under translational invariance, e.g.: $\partial_x \mathbf{u} = 0$.

Parallel shear flows (*Poiseuille* flow)

• Fact: If
$$\mathbf{u}_0(x,y) = \begin{pmatrix} u_0(y) \\ 0 \end{pmatrix} \land \mathbf{q}(t,x,y) = \begin{pmatrix} q(t,y) \\ 0 \end{pmatrix}$$
 then $\mathbf{u}(t,x,y) = \begin{pmatrix} u(t,y) \\ 0 \end{pmatrix}$.

Furthermore: 2D incompressible Navier-Stokes equation \longrightarrow 1D diffusion equation.

$$\begin{array}{c} \nabla \cdot \mathbf{u} = 0\\ \partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} - \nu \nabla \mathbf{u} = -\nabla p + \mathbf{q} \end{array} \right\} \quad \longrightarrow \quad \partial_t u - \nu \partial_x^2 u = q$$

• Proceed analogously with LB algorithm:

Exploit translational invariance \rightarrow confine to cross-section \rightarrow group 9 populations into 3 triples \rightarrow define new populations.

Textbook example: $U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} a \left(U_j^n - U_{j-1}^n \right) \quad \begin{cases} \partial_t v + a \partial_x v = 0 \\ V_j^n := v(n \Delta t, \ j \Delta x) \end{cases}$

$$\underbrace{\frac{V_{j}^{n+1}-V_{j}^{n}}{\Delta t}}_{\partial_{t}v+\mathcal{O}(\Delta t)} + a\underbrace{\frac{V_{j}^{n}-V_{j-1}^{n}}{\Delta x}}_{\partial_{x}v+\mathcal{O}(\Delta x)} = \underbrace{R_{j}^{n}}_{\text{residue}}$$

$$R_j^n = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x)$$

Vanishing residue of exact solution \rightarrow **consistency**

Textbook example: $U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} a \left(U_j^n - U_{j-1}^n \right) \quad \begin{cases} \partial_t v + a \partial_x v = 0 \\ V_j^n := v(n \Delta t, \ j \Delta x) \end{cases}$

$$\underbrace{\frac{V_{j}^{n+1}-V_{j}^{n}}{\Delta t}}_{\partial_{t}v+\mathcal{O}(\Delta t)} + a\underbrace{\frac{V_{j}^{n}-V_{j-1}^{n}}{\Delta x}}_{\partial_{x}v+\mathcal{O}(\Delta x)} = \underbrace{R_{j}^{n}}_{\text{residue}}$$

$$R_j^n = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x)$$

Vanishing residue of exact solution \rightarrow **consistency**

LBM:
$$F_s(n+1,j) = F_s(n,j-s) + [JF(n,j-s)]_s \begin{cases} F = (F_{-1}, F_0, F_{+1})^\top \\ v = (F_{-1} + F_0 + F_{+1}) + Err \end{cases}$$

Textbook example: $U_j^{n+1} = U_j^n - \frac{\Delta t}{\Delta x} a \left(U_j^n - U_{j-1}^n \right) \quad \begin{cases} \partial_t v + a \partial_x v = 0 \\ V_j^n := v(n \Delta t, \ j \Delta x) \end{cases}$

$$\underbrace{\frac{V_{j}^{n+1}-V_{j}^{n}}{\Delta t}}_{\partial_{t}v+\mathrm{O}(\Delta t)} + a\underbrace{\frac{V_{j}^{n}-V_{j-1}^{n}}{\Delta x}}_{\partial_{x}v+\mathrm{O}(\Delta x)} = \underbrace{R_{j}^{n}}_{\mathrm{residue}}$$

$$R_j^n = \mathcal{O}(\Delta t) + \mathcal{O}(\Delta x)$$

Vanishing residue of exact solution \rightarrow **consistency**

LBM:
$$F_s(n+1,j) = F_s(n,j-s) + [JF(n,j-s)]_s \begin{cases} F = (F_{-1}, F_0, F_{+1})^\top \\ v = (F_{-1} + F_0 + F_{+1}) + Err \end{cases}$$

Consistency analysis ?

- Transformation to equivalent (moment) systems
- Expansion methods for parameter-depending problems \rightarrow generalized notion of consistency
 - 1) perturbed equations: ϵ
 - 2) discretized equations: h

$$U_j^n \approx \underbrace{u^{(0)}(nh, jh)}_{u^{(0)}(nh, jh)} + hu^{(1)}(nh, jh) + \dots \qquad \text{yields unique } u^{(0)}, u^{(1)}$$

$$F(n, j) \approx f^{(0)}(nh, jh) + hf^{(1)}(nh, jh) + \dots \qquad f^{(1)} \text{ not fully determined}$$

Part II – Results

• **Goal:** Understanding singular limits:

{ Convergence
 Arising of initial layers

• Model problem: D1P2 LB equation with $Ef = \frac{1}{2}(f_1 + f_2)$

$$\partial_t \mathbf{f}_1 - \boldsymbol{\epsilon}^{-1} \partial_x \mathbf{f}_1 = -\boldsymbol{\epsilon}^{-2} \omega \left[\mathbf{f}_1 - E \mathbf{f} \right] = -\boldsymbol{\epsilon}^{-2} \frac{\omega}{2} \left[\mathbf{f}_1 - \mathbf{f}_2 \right]$$

$$\partial_t \mathbf{f}_2 + \boldsymbol{\epsilon}^{-1} \partial_x \mathbf{f}_2 = -\boldsymbol{\epsilon}^{-2} \omega \left[\mathbf{f}_2 - E \mathbf{f} \right] = -\boldsymbol{\epsilon}^{-2} \frac{\omega}{2} \left[\mathbf{f}_2 - \mathbf{f}_1 \right]$$

{ Convergence
 Arising of initial layers

• Model problem: D1P2 LB equation with $Ef = \frac{1}{2}(f_1 + f_2)$

$$\partial_t f_1 - \epsilon^{-1} \partial_x f_1 = -\epsilon^{-2} \omega [f_1 - Ef] = -\epsilon^{-2} \frac{\omega}{2} [f_1 - f_2]$$

$$\partial_t f_2 + \epsilon^{-1} \partial_x f_2 = -\epsilon^{-2} \omega [f_2 - Ef] = -\epsilon^{-2} \frac{\omega}{2} [f_2 - f_1]$$

- **Reformulation:** 2×2 system \rightarrow *equivalent* scalar equation
- Mass moment: $u = f_1 + f_2$, 1^{st} moment (flux): $\phi = \epsilon^{-1} (f_2 f_1)$
- Linear transformation $f_1, f_2 \leftrightarrow u, \phi$ leads to equivalent moment system:

$$\begin{aligned} \partial_t u &+ \partial_x \phi &= 0 & \partial_x \partial_t \phi = -\partial_t^2 u \\ \partial_t \phi &+ \epsilon^{-2} \partial_x u &= -\epsilon^{-2} \omega \phi & \partial_x \phi = -\epsilon^2 \tau \partial_x \partial_t \phi - \tau \partial_x^2 u \\ \Rightarrow & \boxed{\epsilon^2 \tau \partial_t^2 u + \partial_t u - \tau \partial_x^2 u = 0} \end{aligned}$$

{ Convergence
 Arising of initial layers

• Model problem: D1P2 LB equation with $Ef = \frac{1}{2}(f_1 + f_2)$

$$\partial_t f_1 - \epsilon^{-1} \partial_x f_1 = -\epsilon^{-2} \omega \left[f_1 - E f \right] = -\epsilon^{-2} \frac{\omega}{2} \left[f_1 - f_2 \right]$$

$$\partial_t f_2 + \epsilon^{-1} \partial_x f_2 = -\epsilon^{-2} \omega \left[f_2 - E f \right] = -\epsilon^{-2} \frac{\omega}{2} \left[f_2 - f_1 \right]$$

- **Reformulation:** 2×2 system \rightarrow *equivalent* scalar equation
- Mass moment: $u = f_1 + f_2$, 1^{st} moment (flux): $\phi = \epsilon^{-1} (f_2 f_1)$
- Linear transformation $f_1, f_2 \leftrightarrow u, \phi$ leads to equivalent moment system:

$$\partial_{t}u + \partial_{x}\phi = 0 \qquad \partial_{x}\partial_{t}\phi = -\partial_{t}^{2}u$$
$$\partial_{t}\phi + \epsilon^{-2}\partial_{x}u = -\epsilon^{-2}\omega\phi \qquad \partial_{x}\phi = -\epsilon^{2}\tau\partial_{x}\partial_{t}\phi - \tau\partial_{x}^{2}u$$
$$\Rightarrow \qquad \left[\epsilon^{2}\tau\partial_{t}^{2}u + \partial_{t}u - \tau\partial_{x}^{2}u = 0\right]$$

• BC: bounce-back-type condition for f \rightarrow hom. Dirichlet condition for u

$$\mathsf{f}_2(t,x_b) = -\mathsf{f}_1(t,x_b) \quad \Leftrightarrow \quad u(t,x_b) = 0$$

• IC:
$$\begin{bmatrix} f_1(0,\cdot) \\ f_2(0,\cdot) \end{bmatrix} \Leftrightarrow \begin{bmatrix} u(0,\cdot) \\ \phi(0,\cdot) \end{bmatrix} \Leftrightarrow \begin{bmatrix} u(0,\cdot) \\ \partial_t u(0,\cdot) = -\partial_x \phi(0,\cdot) \end{bmatrix}$$

Part II - Results

	Reformulated LB equation	$\stackrel{\epsilon\downarrow 0}{\leadsto}$	Target equation
EQ:	$\epsilon^2 \tau \partial_t^2 u_{\epsilon} + \partial_t u_{\epsilon} - \tau \partial_x^2 u_{\epsilon} = 0$) (Ε	Q: $\partial_t u - \tau \partial_x^2 u = 0$
BC:	$u_{\epsilon}(\cdot,0)=0 \wedge u_{\epsilon}(\cdot,1)=0$	BO	$ \textbf{C}: u(\cdot,0) = 0 \ \land \ u(\cdot,1) = 0 $
IC:	$u_{\epsilon}(0,\cdot) = g \wedge \partial_t u_{\epsilon}(0,\cdot) = h$	J	$u(0,\cdot)=g$

Compatible initialization: $h = \partial_t u(0, \cdot) = \tau \partial_x^2 u(0, \cdot) = \tau \partial_x^2 g(0, \cdot).$

Reformulated LB equation
$$\epsilon \downarrow 0$$
Target equationEQ: $\epsilon^2 \tau \partial_t^2 u_{\epsilon} + \partial_t u_{\epsilon} - \tau \partial_x^2 u_{\epsilon} = 0$ $\left\{ \begin{array}{cc} \mathsf{EQ:} & \partial_t u - \tau \partial_x^2 u = 0 \\ \mathsf{BC:} & u_{\epsilon}(\cdot, 0) = 0 & \wedge & u_{\epsilon}(\cdot, 1) = 0 \\ \mathsf{BC:} & u_{\epsilon}(0, \cdot) = g & \wedge & \partial_t u_{\epsilon}(0, \cdot) = h \end{array} \right\}$ $\left\{ \begin{array}{cc} \mathsf{EQ:} & \partial_t u - \tau \partial_x^2 u = 0 \\ \mathsf{BC:} & u(\cdot, 0) = 0 & \wedge & u(\cdot, 1) = 0 \\ \mathsf{BC:} & u(\cdot, 0) = 0 & \wedge & u(\cdot, 1) = 0 \\ \mathsf{IC:} & u(0, \cdot) = g \end{array} \right\}$

Compatible initialization: $h = \partial_t u(0, \cdot) = \tau \partial_x^2 u(0, \cdot) = \tau \partial_x^2 g(0, \cdot).$

Fourier ansatz using $s_n(x) := \sin(n\pi x)$:

$$\begin{array}{ll} \text{Initial cond.:} & \mathcal{L}^2(0,1) \ni g = \sum_n \alpha_n s_n, & \mathcal{L}^2(0,1) \ni h = \sum_n \beta_n s_n \\ \text{Solutions:} & u_{\epsilon}(t,x) = \sum_n \sigma_{\epsilon,n}(t) s_n(x), & u(t,x) = \sum_n \sigma_n(t) s_n(x) \end{array}$$

Reformulated LB equation
$$\epsilon \downarrow 0$$
Target equationEQ: $\epsilon^2 \tau \partial_t^2 u_{\epsilon} + \partial_t u_{\epsilon} - \tau \partial_x^2 u_{\epsilon} = 0$ $\left\{ \begin{array}{cc} \mathsf{EQ:} & \partial_t u - \tau \partial_x^2 u = 0 \\ \mathsf{BC:} & u_{\epsilon}(\cdot, 0) = 0 & \wedge & u_{\epsilon}(\cdot, 1) = 0 \\ \mathsf{BC:} & u_{\epsilon}(0, \cdot) = g & \wedge & \partial_t u_{\epsilon}(0, \cdot) = h \end{array} \right\}$ $\left\{ \begin{array}{cc} \mathsf{EQ:} & \partial_t u - \tau \partial_x^2 u = 0 \\ \mathsf{BC:} & u(\cdot, 0) = 0 & \wedge & u(\cdot, 1) = 0 \\ \mathsf{BC:} & u(\cdot, 0) = 0 & \wedge & u(\cdot, 1) = 0 \\ \mathsf{IC:} & u(0, \cdot) = g \end{array} \right\}$

Compatible initialization: $h = \partial_t u(0, \cdot) = \tau \partial_x^2 u(0, \cdot) = \tau \partial_x^2 g(0, \cdot).$

Fourier ansatz using $s_n(x) := \sin(n\pi x)$:

$$\begin{array}{ll} \text{Initial cond.:} & \mathcal{L}^2(0,1) \ni g = \sum_n \alpha_n s_n, & \mathcal{L}^2(0,1) \ni h = \sum_n \beta_n s_n \\ \text{Solutions:} & u_{\epsilon}(t,x) = \sum_n \sigma_{\epsilon,n}(t) s_n(x), & u(t,x) = \sum_n \sigma_n(t) s_n(x) \end{array}$$

IVPs for the coefficient functions with $\lambda_n := au \pi^2 n^2$:

$$\begin{array}{ccc} & \operatorname{Perturbed \ problem} & \stackrel{\epsilon \downarrow 0}{\leadsto} & \operatorname{Limit \ problem} \\ \operatorname{EQ:} & \epsilon^{2} \tau \ddot{\sigma}_{\epsilon,n} + \dot{\sigma}_{\epsilon,n} + \lambda_{n} \sigma_{\epsilon,n} = 0 \\ \operatorname{IC:} & \sigma_{\epsilon,n}(0) = \alpha_{n} \ \land \ \dot{\sigma}_{\epsilon,n}(0) = \beta_{n} \end{array} \right\} & \begin{cases} \operatorname{EQ:} & \dot{\sigma}_{n} + \lambda_{n} \sigma_{n} = 0 \\ \operatorname{IC:} & \sigma_{n}(0) = \alpha_{n} \end{cases}$$

- Estimate of Fourier coefficient functions: $|\sigma_{\epsilon,n}(t)| < 2|\alpha_n| + |\beta_n|\tau\epsilon^2$. Time derivative: $\left|\frac{\mathrm{d}}{\mathrm{d}t}\sigma_{\epsilon,n}(t)\right| < |\alpha_n|\lambda_n + 2|\beta_n|$.
- Pointwise convergence of Fourier coefficients: $\sigma_{\epsilon,n}(t) \xrightarrow{\epsilon \downarrow 0} \sigma_n(t) = \alpha_n e^{-\lambda_n t}$

- Estimate of Fourier coefficient functions: $|\sigma_{\epsilon,n}(t)| < 2|\alpha_n| + |\beta_n|\tau\epsilon^2$. Time derivative: $\left|\frac{\mathrm{d}}{\mathrm{d}t}\sigma_{\epsilon,n}(t)\right| < |\alpha_n|\lambda_n + 2|\beta_n|$.
- Pointwise convergence of Fourier coefficients: $\sigma_{\epsilon,n}(t) \xrightarrow{\epsilon \downarrow 0} \sigma_n(t) = \alpha_n e^{-\lambda_n t}$
- Set: $u_{\epsilon}(t,x) := \sum_{n} \sigma_{\epsilon,n}(t) s_n(x)$ (generally only solution in a weak sense)
- \mathcal{L}^2 -convergence of Fourier-series: $g, h \in \mathcal{L}^2(0, 1) \implies u_{\epsilon}(t, \cdot) \in \mathcal{L}^2(0, 1)$
- Continuity in time: $u_{\epsilon} \in \mathcal{C}([0,\infty),\mathcal{L}^2(0,1))$
- *Pointwise* convergence in *time* requiring only \mathcal{L}^2 -regularity in *space*:

$$\|u_{\epsilon}(t,\cdot) - u(t,\cdot)\|_{2} \xrightarrow{\epsilon \downarrow 0} 0$$

- Estimate of Fourier coefficient functions: $|\sigma_{\epsilon,n}(t)| < 2|\alpha_n| + |\beta_n|\tau\epsilon^2$. Time derivative: $\left|\frac{\mathrm{d}}{\mathrm{d}t}\sigma_{\epsilon,n}(t)\right| < |\alpha_n|\lambda_n + 2|\beta_n|.$
- Pointwise convergence of Fourier coefficients: $\sigma_{\epsilon,n}(t) \xrightarrow{\epsilon \downarrow 0} \sigma_n(t) = \alpha_n e^{-\lambda_n t}$
- Set: $u_{\epsilon}(t,x) := \sum_{n} \sigma_{\epsilon,n}(t) s_n(x)$ (generally only solution in a weak sense)
- \mathcal{L}^2 -convergence of Fourier-series: $g, h \in \mathcal{L}^2(0,1) \implies u_{\epsilon}(t, \cdot) \in \mathcal{L}^2(0,1)$
- Continuity in time: $u_{\epsilon} \in \mathcal{C}([0,\infty), \mathcal{L}^2(0,1))$
- *Pointwise* convergence in *time* requiring only \mathcal{L}^2 -regularity in *space*:

$$\|u_{\epsilon}(t,\cdot) - u(t,\cdot)\|_2 \xrightarrow{\epsilon \downarrow 0} 0$$

- Convergence rate of Fourier coefficients: $\sup_{t \in [0,\infty)} |\sigma_{\epsilon,n}(t) \sigma(t)| < C\epsilon^2$ + stronger regularity assumptions \Rightarrow convergence rate for u_{ϵ} . (In particular: uniform convergence in time and space follows.)
- **Transfering** properties from $(\sigma_{\epsilon,n})_n$ to u_{ϵ} :

Split Fourier series into $\begin{cases} \text{ leading part } \leftarrow \text{ finitely many terms, direct transfer.} \\ \text{ tail } \leftarrow \text{ infinitely many terms, but converging.} \end{cases}$

Convergence

Theorem: If $A := \sum_{n \ge 1} |\alpha_n| \lambda_n < \infty$ and $B := \sum_{n \ge 1} |\beta_n| < \infty$, there exist constants $C, \eta > 0$ depending only on τ and on the initial data via A and B such that for all $0 < \epsilon < \eta$:

$$\sup_{t \in [0,\infty)} \|u_{\epsilon}(t,\cdot) - u(t,\cdot)\|_{\infty} < C\epsilon^{2}.$$

Convergence

Theorem: If $A := \sum_{n \ge 1} |\alpha_n| \lambda_n < \infty$ and $B := \sum_{n \ge 1} |\beta_n| < \infty$, there exist constants $C, \eta > 0$ depending only on τ and on the initial data via A and B such that for all $0 < \epsilon < \eta$:

$$\sup_{t \in [0,\infty)} \|u_{\epsilon}(t,\cdot) - u(t,\cdot)\|_{\infty} < C\epsilon^{2}.$$

Remarks:

- $u_{\epsilon}(t, \cdot)$ not defined as solution of PDE but via Fourier series (convergence proof!).
- Assumptions on Fourier coefficients $(\alpha_n)_n, (\beta_n)_n \Rightarrow$

regularity conditions: $g \in C^2([0,1]), h \in C([0,1]).$

• Convergence of
$$\partial_t u_{\epsilon}$$
:

$$\begin{cases}
generally: pointwise on (0, \infty) \\
compatible init.: uniformly on [0, \infty) \\
incompatible init.: uniformly on [\theta, \infty) for arbitrary $\theta > 0
\end{cases}$$$

• Initial layer: { compensates incompatible initialization. decays rapidly.

- Ansatz: $\sigma_{\epsilon}(t) = \sigma^{(0)}(\frac{t}{\epsilon^2}, t) + \epsilon^2 \sigma^{(2)}(\frac{t}{\epsilon^2}, t) + \dots$
- Motivation: consider plots of $\frac{\mathrm{d}}{\mathrm{d}t}\sigma_\epsilon$ for different ϵ

- Ansatz: $\sigma_{\epsilon}(t) = \sigma^{(0)}(\frac{t}{\epsilon^2}, t) + \epsilon^2 \sigma^{(2)}(\frac{t}{\epsilon^2}, t) + \dots$
- Motivation: consider plots of $\frac{\mathrm{d}}{\mathrm{d}t}\sigma_\epsilon$ for different ϵ

• **Outcome:** structure of order functions

$$\sigma^{(2k)}(t/\epsilon^2, t) = \underbrace{\mathrm{e}^{-\omega t/\epsilon^2} \phi^{(2k)}(t)}_{\text{irregular}} + \underbrace{\zeta^{(2k)}(t)}_{\text{regular}}$$

• Hierarchic ODE-system defining the asymptotic order functions:

$$\begin{split} \epsilon^{0} : & \phi^{(0)} \equiv 0 & \dot{\zeta}^{(0)} + \lambda \zeta^{(0)} = 0 \\ \zeta^{(0)}(0) = \alpha & \dot{\zeta}^{(0)}(0) = \alpha \\ \epsilon^{2} : & \dot{\phi}^{(2)} - \lambda \phi^{(2)} = 0 & \dot{\zeta}^{(2)} + \lambda \zeta^{(2)} = -\tau \ddot{\zeta}^{(0)} \\ \phi^{(2)}(0) = \tau \dot{\zeta}^{(0)}(0) - \tau \beta & \zeta^{(2)}(0) = -\phi^{(2)}(0) \\ \end{split}$$

• LB algorithm \rightarrow explicit iteration: $F(n + 1) = EF(n) = E^{n+1}F(0)$

• LB algorithm \rightarrow explicit iteration: $F(n + 1) = EF(n) = E^{n+1}F(0)$

	Collision block:	$\alpha = 1 - $	$-rac{1}{2}\omega(1+r)$	$\beta =$	$\frac{1}{2}\omega(1-r)$
•	CONISION DIOCK.	$\gamma =$	$\frac{1}{2}\omega(1+r)$	$\delta = 1$ -	$-rac{1}{2}\omega(1-r)$.

		hyperbolic scaling
•	Scaling:	$r = a, \ \Delta x = \frac{h}{h}, \ \Delta t = \frac{h}{h}$
		$\partial_t v + a \partial_x v = 0$

parabolic scaling $r = ah, \ \Delta x = h, \ \Delta t = h^2$ $\partial_t v + a \partial_x v - (\frac{1}{\omega} - \frac{1}{2}) \partial_x^2 v = 0$ • LB algorithm \rightarrow explicit iteration: $F(n + 1) = EF(n) = E^{n+1}F(0)$

	Collision block:	$\alpha = 1 - $	$-\frac{1}{2}\omega(1+r)$	$\beta =$	$\frac{1}{2}\omega(1-r)$
•	CONISION DIOCK.	$\gamma =$	$\frac{1}{2}\omega(1+r)$	$\delta = 1 -$	$-\frac{1}{2}\omega(1-r)$

• Scaling:
$$r = a, \ \Delta x = h, \ \Delta t = h$$

 $\partial_t v + a \partial_x v = 0$

parabolic scaling

$$r = ah, \ \Delta x = h, \ \Delta t = h^2$$

 $\partial_t v + a \partial_x v - (\frac{1}{\omega} - \frac{1}{2}) \partial_x^2 v = 0$

• Computing eigenvalues of E

$$\operatorname{spec}(\mathbf{L}) = \operatorname{spec}(\mathbf{R}) = \{w, w^2, \dots, w^N\}$$
 $w := e^{\frac{2\pi i}{N}}$

● Discrete Fourier transformation → characteristic polynomial

$$\lambda \mapsto \prod_{m=0}^{N-1} \underbrace{\left[(\alpha w^m - \lambda) (\delta \overline{w}^m - \lambda) - \beta \gamma \right]}_{\chi_{\omega, r}(\lambda; \frac{2\pi m}{N})}$$

$$\chi_{\omega,r}(\lambda;\phi) := \lambda^2 + \left[(\omega - 2)\cos(\phi) + i\omega r\sin(\phi) \right] \lambda + (1 - \omega)$$

Spectral limit set:

$$\operatorname{spec}(\mathbf{E}) \subset \mathfrak{S}(\omega, r) := \left\{ \lambda \in \mathbb{C} \mid \exists \phi \in [0, 2\pi) \text{ with } \chi_{\omega, r}(\lambda; \phi) = 0 \right\}$$

Part II – Results

Stability conditions: {

i)
$$\omega \in [0, 2]$$
 (general property)
ii) $r \in [-1, 1]$ (specific property -

(specific property \rightarrow CFL-condition)

Stability	:	$\exists K > 0 : \forall \operatorname{grids}_h :$	$\forall n \in \mathbb{N}_0,$	$\ \mathbf{E}_{\mathbf{h}}^n\ _{\mathbf{h}} < K$
-----------	---	--	-------------------------------	--

CFL condition:analytic
domain of depend.numeric
domain of depend.3-point stencil schemes:
$$|a| \leq \frac{\Delta x}{\Delta t} = \begin{cases} \frac{h}{h} = 1 & \text{hyperbolic scaling} \\ \frac{h}{h^2} = \frac{1}{h} & \text{parabolic scaling} \end{cases}$$

Theorem 1:
$$\mathfrak{S}(\omega, r) \subset \overline{D_1(0)} \iff \begin{cases} i & \omega \in [0, 2] \\ ii & r \in [-1, 1] \end{cases}$$
 (for $\theta = 1$)

Theorem 2: The advective-diffusive and the purely advective D1P2 lattice-Boltzmann scheme are stable w.r.t. the ℓ_2 -norm if and only if $0 \le \omega \le 2$ and $-1 \le r \le 1$, or $\omega = 0$.

 $\lambda_{\omega,r}(\phi) = -\frac{1}{2} \left[(\omega - 2)\cos(\phi) + i\omega r\sin(\phi) \right] \pm \sqrt{\frac{1}{4} \left[(\omega - 2)\cos(\phi) + i\omega a\sin(\phi) \right]^2 - (1 - \omega)}$

Other idea \rightarrow consider special cases: $\omega = 1$ or $\phi \in \{0, \pi\} \rightarrow$ comparison function Theorem of *Rouché* \rightarrow *general case*.

 $\lambda_{\omega,r}(\phi) = -\frac{1}{2} \left[(\omega - 2)\cos(\phi) + i\omega r\sin(\phi) \right] \pm \sqrt{\frac{1}{4} \left[(\omega - 2)\cos(\phi) + i\omega a\sin(\phi) \right]^2 - (1 - \omega)}$

Other idea \rightarrow consider special cases: $\omega = 1$ or $\phi \in \{0, \pi\} \rightarrow$ comparison function. Theorem of *Rouché* \rightarrow *general case*.

Proof of theorem 2:

• Discrete Fourier trafo & permutation of indices:

$$\begin{split} \mathbf{E} &= \operatorname{blockdiag} \left(M(\phi) \right)_{\phi \in \frac{2\pi}{N} \{0, 1, \dots, N-1\}} \quad \text{with} \quad M(\phi) = \begin{pmatrix} \alpha \mathrm{e}^{\mathrm{i}\phi} & \beta \mathrm{e}^{\mathrm{i}\phi} \\ \gamma \mathrm{e}^{-\mathrm{i}\phi} & \delta \mathrm{e}^{-\mathrm{i}\phi} \end{pmatrix} \\ \Rightarrow \quad \|\mathbf{E}^n\|_2 \leq \sup_{\phi \in [0, 2\pi]} \|M^n(\phi)\|_2 \end{split}$$

 $\lambda_{\omega,r}(\phi) = -\frac{1}{2} \left[(\omega - 2)\cos(\phi) + i\omega r\sin(\phi) \right] \pm \sqrt{\frac{1}{4} \left[(\omega - 2)\cos(\phi) + i\omega a\sin(\phi) \right]^2 - (1 - \omega)}$

Other idea \rightarrow consider special cases: $\omega = 1$ or $\phi \in \{0, \pi\} \rightarrow$ comparison function. Theorem of *Rouché* \rightarrow *general case*.

Proof of theorem 2:

• Discrete Fourier trafo & permutation of indices:

$$\mathbf{E} = \operatorname{blockdiag}(M(\phi))_{\phi \in \frac{2\pi}{N} \{0, 1, \dots, N-1\}} \quad \text{with} \quad M(\phi) = \begin{pmatrix} \alpha e^{i\phi} & \beta e^{i\phi} \\ \gamma e^{-i\phi} & \delta e^{-i\phi} \end{pmatrix}$$
$$\Rightarrow \quad \|\mathbf{E}^n\|_2 \le \sup_{\phi \in [0, 2\pi]} \|M^n(\phi)\|_2$$

• Family of continuous functions: $n \in \mathbb{N}$: $f_n : [0, 2\pi] \to \mathbb{R}, f_n(\phi) := \|M^n(\phi)\|_2$

 $\lambda_{\omega,r}(\phi) = -\frac{1}{2} \left[(\omega - 2)\cos(\phi) + i\omega r\sin(\phi) \right] \pm \sqrt{\frac{1}{4} \left[(\omega - 2)\cos(\phi) + i\omega a\sin(\phi) \right]^2 - (1 - \omega)}$

Other idea \rightarrow consider special cases: $\omega = 1$ or $\phi \in \{0, \pi\} \rightarrow$ comparison function. Theorem of *Rouché* \rightarrow *general case*.

Proof of theorem 2:

• Discrete Fourier trafo & permutation of indices:

$$\mathbf{E} = \operatorname{blockdiag}(M(\phi))_{\phi \in \frac{2\pi}{N} \{0, 1, \dots, N-1\}} \quad \text{with} \quad M(\phi) = \begin{pmatrix} \alpha e^{i\phi} & \beta e^{i\phi} \\ \gamma e^{-i\phi} & \delta e^{-i\phi} \end{pmatrix}$$
$$\Rightarrow \quad \|\mathbf{E}^n\|_2 \le \sup_{\phi \in [0, 2\pi]} \|M^n(\phi)\|_2$$

- Family of continuous functions: $n \in \mathbb{N}$: $f_n : [0, 2\pi] \to \mathbb{R}, f_n(\phi) := \|M^n(\phi)\|_2$
- Theorem 1 $\rho(M(\phi)) \leq 1$ & diagonalizibility of $M(\phi)$: \Rightarrow pointwise boundedness of $(f_n)_{n \in \mathbb{N}}$, i.e.:

$$\exists C_{\phi} > 0, \ \forall n \in \mathbb{N}: \ \sup_{n \in \mathbb{N}} \|M^{n}(\phi)\|_{2} = \sup_{n \in \mathbb{N}} \|f_{n}(\phi)\|_{2} < C_{\phi}$$

 $\lambda_{\omega,r}(\phi) = -\frac{1}{2} \left[(\omega - 2)\cos(\phi) + i\omega r\sin(\phi) \right] \pm \sqrt{\frac{1}{4} \left[(\omega - 2)\cos(\phi) + i\omega a\sin(\phi) \right]^2 - (1 - \omega)}$

Other idea \rightarrow consider special cases: $\omega = 1$ or $\phi \in \{0, \pi\} \rightarrow$ comparison function. Theorem of *Rouché* \rightarrow *general case*.

Proof of theorem 2:

• Discrete Fourier trafo & permutation of indices:

$$\mathbf{E} = \operatorname{blockdiag}(M(\phi))_{\phi \in \frac{2\pi}{N} \{0, 1, \dots, N-1\}} \quad \text{with} \quad M(\phi) = \begin{pmatrix} \alpha e^{i\phi} & \beta e^{i\phi} \\ \gamma e^{-i\phi} & \delta e^{-i\phi} \end{pmatrix}$$
$$\Rightarrow \quad \|\mathbf{E}^n\|_2 \le \sup_{\phi \in [0, 2\pi]} \|M^n(\phi)\|_2$$

- Family of continuous functions: $n \in \mathbb{N}$: $f_n : [0, 2\pi] \to \mathbb{R}, f_n(\phi) := \|M^n(\phi)\|_2$
- Theorem 1 $\rho(M(\phi)) \leq 1$ & diagonalizibility of $M(\phi)$: \Rightarrow pointwise boundedness of $(f_n)_{n \in \mathbb{N}}$, i.e.:

$$\exists C_{\phi} > 0, \ \forall n \in \mathbb{N}: \ \sup_{n \in \mathbb{N}} \|M^{n}(\phi)\|_{2} = \sup_{n \in \mathbb{N}} \|f_{n}(\phi)\|_{2} < C_{\phi}$$

- Principle of uniform boundedness: \Rightarrow local boundedness.
- Compactness of $[0, 2\pi] \Rightarrow$ global boundedness.

Long time behavior of the advective D1P2 LB scheme

Observation: linear time-scale (advection) \leftrightarrow cubic time-scale (dispersion)

Prediction: comparison regular \leftrightarrow twoscale expansion (200 nodes)

Part II – Results

Σ ummary

- LBM: PDE solver inspired by pseudo-particle dynamics (collision/transport step)
- Motivation: lack of solid understanding despite of rich engineering experience
 → elimination of numerical artefacts, basis for systematic extensions
- Important analytic tool: asymptotic expansions
- Presented results:
 - better comprehension of initial layers (generation, long time impact)
 - exemplarily: stability properties of an LB model algorithm

Example: Observation of an initial layer

(simulating decaying eigenmode of Stokes operator)

- Unusual behavior: rapid *decrease* of error instead of growth.
- Composition of numeric error displaying several time scales:

Example: Observation of an initial layer

(simulating decaying eigenmode of Stokes operator)

- Unusual behavior: rapid *decrease* of error instead of growth.
- Composition of numeric error displaying several time scales:

feature	t(n)	time scale	interpretation	evolution governed by
plateau	nh^2	slow time (plotted)	standard discretization error	inhomogeneous Stokes eq.
'beat-bellies'	$n\mathbf{h}$	fast time	initial layer of FVBE	'wave-like' PDE (pseudo-sound)
decay	n	discrete time	discrete initial layer	$ 1-\omega ^n$
oscillations	n	discrete time	discrete initial layer	$(-1)^n$

Example: Observation of an initial layer

(simulating decaying eigenmode of Stokes operator)

- Unusual behavior: rapid *decrease* of error instead of growth.
- Composition of numeric error displaying several time scales:

feature	t(n)	time scale	interpretation	evolution governed by
plateau	nh^2	slow time (plotted)	standard discretization error	inhomogeneous Stokes eq.
'beat-bellies'	$n \frac{h}{h}$	fast time	initial layer of FVBE	'wave-like' PDE (pseudo-sound)
decay	n	discrete time	discrete initial layer	$ 1-\omega ^n$
oscillations	n	discrete time	discrete initial layer	$(-1)^n$

Incipient questions: consistency (traditional approach via Chapman-Enskog expansion) convergence (requires stability) further properties (multiple time scales, scaling, numerical layers)

Domain decomposition \rightarrow coupling conditions for target equation \rightarrow translation into interface conditions for LB primary variables \rightarrow interface layers in the case of incompatibilities

General strategy:

Domain decomposition \rightarrow coupling conditions for target equation \rightarrow translation into interface conditions for LB primary variables \rightarrow interface layers in the case of incompatibilities

General strategy:

$$\begin{array}{rll} - \mbox{ Singular limit: } x_{\eta} \xrightarrow[]{\eta \to 0} \overline{x}_0 \in X_0 \\ & \mbox{ while } A_{\eta} \xrightarrow[]{\text{formally}} A_0 : X_0 \to X_0 & \mbox{ but } A_0 x_0 = 0 & \mbox{ ill-posed} \end{array}$$

- Singular limit:
$$x_{\eta} \xrightarrow{\eta \to 0} \overline{x}_0 \in X_0$$

while $A_{\eta} \xrightarrow{\text{formally}} A_0 : X_0 \to X_0$ but $A_0 x_0 = 0$ ill-posed

Comparison function → ansatz: regular expansion

$$y^{[n]}_{\eta} := y^{(0)} + \eta y^{(2)} + ... + \eta^n y^{(n)}$$
 with $y^{(k)} \in X_0$

- Alternatively: *irregular expansion*: $y^{(k)} = y_{\eta}^{(k)} \in \begin{cases} X_{\eta} & \text{(discrete coefficient functions)} \\ X_{0} & \text{(e.g. multiscale expansion)} \end{cases}$

- Singular limit:
$$x_{\eta} \xrightarrow{\eta \to 0} \overline{x}_0 \in X_0$$

while $A_{\eta} \xrightarrow{\text{formally}} A_0 : X_0 \to X_0$ but $A_0 x_0 = 0$ ill-posed

● Comparison function → ansatz: regular expansion

$$y^{[n]}_{\pmb{\eta}} := y^{(0)} + \pmb{\eta} y^{(2)} + ... + \pmb{\eta}^n y^{(n)}$$
 with $y^{(k)} \in X_0$

- Alternatively: irregular expansion: $y^{(k)} = y_{\eta}^{(k)} \in \begin{cases} X_{\eta} & \text{(discrete coefficient functions)} \\ X_{0} & \text{(e.g. multiscale expansion)} \end{cases}$

- Minimize residue: $r_{\eta}^{[n]} := A_{\eta} \left(R_{\eta} y_{\eta}^{[n]} \right)$ $R_{\eta} : X_0 \to X_{\eta}$ (restriction/projection) e.g. $r_{\eta}^{[n]} = O(\eta^n) \Rightarrow n$ "consistency order"

- Singular limit:
$$x_{\eta} \xrightarrow{\eta \to 0} \overline{x}_0 \in X_0$$

while $A_{\eta} \xrightarrow{\text{formally}} A_0 : X_0 \to X_0$ but $A_0 x_0 = 0$ ill-posed

● Comparison function → ansatz: regular expansion

$$y^{[n]}_{\pmb{\eta}} := y^{(0)} + \pmb{\eta} y^{(2)} + ... + \pmb{\eta}^n y^{(n)}$$
 with $y^{(k)} \in X_0$

- Alternatively: irregular expansion: $y^{(k)} = y_{\eta}^{(k)} \in \begin{cases} X_{\eta} & \text{(discrete coefficient functions)} \\ X_{0} & \text{(e.g. multiscale expansion)} \end{cases}$

- Minimize **residue**: $r_{\eta}^{[n]} := A_{\eta} \left(R_{\eta} y_{\eta}^{[n]} \right)$ $R_{\eta} : X_0 \to X_{\eta}$ (restriction/projection) e.g. $r_{\eta}^{[n]} = O(\eta^n) \Rightarrow n$ "consistency order"
- Asymptotic similarity:

$$\begin{aligned} \|R_{\eta}y_{\eta}^{[n]} - x_{\eta}\|_{X_{\eta}} &= \|(A_{\eta}^{-1} \circ A_{\eta})R_{\eta}y_{\eta}^{[n]} - (A_{\eta}^{-1} \circ A_{\eta})x_{\eta}\|_{X_{\eta}} \\ &= \|A_{\eta}^{-1}r_{\eta}^{[n]} - A_{\eta}^{-1}0\|_{X_{\eta}} \leq \operatorname{Lip}_{A_{\eta}^{-1}}\|r_{\eta}^{[n]}\|_{X_{\eta}} \xrightarrow{\text{stability}}{\xrightarrow[\eta \to 0]{ \operatorname{marks: non-uniqueness of order functions (high order regular $y_{\eta}^{(n)}$, irregular $y_{\eta}^{(k)}$).$$

• **Remarks:** non-uniqueness of order functions (high order regular $y^{(n)}$, irregular $y^{(\kappa)}_{\eta}$), ambiguity of consistency order $\eta^{\alpha}A_{\eta}x_{\eta} = 0 \iff A_{\eta}x_{\eta} = 0$, crude standard estimate

Part I – Introduction

Analysis of a numerical boundary layer

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}u(x) = -4\pi^2\sin(2\pi x) + \mathsf{BCs} \qquad \to u(x) = \sin(2\pi x)$$

Analysis of a numerical boundary layer

$$\frac{\mathrm{d}^2}{\mathrm{d}x^2}u(x) = -4\pi^2\sin(2\pi x) + \mathsf{BCs} \qquad \to u(x) = \sin(2\pi x)$$

• Expansion of v requires order functions defined by purely discrete equations:

 $\Delta_{h}v = f \quad \text{approximate } u \text{ by } \quad v^{[n]} := \hat{u}^{(0)} + \frac{h}{h} \big(\hat{u}^{(1)} + s^{(1)}_{h} \big) + \ldots + \frac{h^{n}}{h} \big(\hat{u}^{(n)} + s^{(n)}_{h} \big)$

• Standard stability estimate too crude \rightarrow damping property

$$\|\Delta_{h}^{-1}\|_{\infty} \|r_{h}^{[n]}\|_{\infty} \xrightarrow{h \to 0} 0 \quad \text{but} \quad \|\Delta_{h}^{-1}r_{h}^{[n]}\|_{\infty} \xrightarrow{\epsilon \to 0} 0$$

- D1P3 model \Rightarrow no equivalent scalar equation!
- Regular asymptotic expansion:

$$\mathbf{f} \approx \underbrace{\mathbf{f}^{(0)} + \boldsymbol{\epsilon} \mathbf{f}^{(1)} + \boldsymbol{\epsilon}^{2} \mathbf{f}^{(2)} + \ldots + \boldsymbol{\epsilon}^{n} \mathbf{f}^{(n)}}_{=:\mathbf{f}^{[n]}}$$

- Residual: $\partial_t f^{[n]} + \epsilon^{-1} S \partial_x f^{[n]} = \epsilon^{-2} J f^{[n]} + r^{[n]}$
- Determine $f^{(0)}, f^{(1)}, ...$ such that $r^{[n]} \in O(\epsilon^{\alpha})$ with α as large as possible.

•
$$f \leftrightarrow u$$
 with $\partial_t u - \frac{\tau}{6} \partial_x^2 u = 0$

$$\begin{cases} f^{(0)} = u w \\ f^{(1)} = -\tau \partial_x u sw \\ f^{(2)} = \tau^2 \partial_x^2 u (s^2 w - \frac{1}{6} w) \end{cases}$$

$$\Rightarrow \text{ consistency: } \langle f, 1 \rangle = u.$$

• Justification of regular expansion: consistency + stability \Leftrightarrow convergence.

• Theorem: $\begin{cases} f_{\epsilon} \in \mathcal{C}_{per}^{1}(\mathcal{X}_{T}, \mathcal{F}) & \text{solution of LBE} \\ \hat{f}_{\epsilon} \in \mathcal{C}_{per}^{1}(\mathcal{X}_{T}, \mathcal{F}) & \text{approximate solution of LBE with residual} \in O(\epsilon^{\alpha}) \\ \|f_{\epsilon}(0, \cdot) - \hat{f}_{\epsilon}(0, \cdot)\|_{\mathcal{L}^{2}(\mathcal{X}, \mathcal{F})} < K_{0}\epsilon^{\alpha} \end{cases}$

$$\Rightarrow \sup_{t \in [0,T]} \| \mathbf{f}_{\boldsymbol{\epsilon}}(t, \cdot) - \hat{\mathbf{f}}_{\boldsymbol{\epsilon}}(t, \cdot) \|_{\mathcal{L}^{2}(\mathcal{X}, \mathcal{F})} < K_{0} \boldsymbol{\epsilon}^{\boldsymbol{\alpha}}$$

