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Classification of LBM

What are Lattice-Boltzmann Methods (LBM)?

e Numeric approach for computing solutions of certain (evolutionary) PDEs.
= Alternative to traditional schemes: FDM, FEM and FVM.

e Key features:

+ Indirect discretization realizing a mesoscopic ansatz (additional variables simplify numerics).
= Connection to target equation is a priori not obvious.

+ Implemention of relatively low complexity — well suited for parallelization.

— Restrictions: explicit scheme, regular grids (adaptivity?), memory intensive, ...

e Main applications:
— Various engineering problems with fluid-dynamic background.
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The basic underlying idea of LBM

e Macroscopic view: continuum hypothesis
Op+u-Vp=0, Opu+u-Vu = —%Vp,...
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The basic underlying idea of LBM

>

e Macroscopic view: continuum hypothesis o Microscopic view: particle dynamics

— _ 1
otp+u-Vp=0, O)ru+u-Vu= _EVP"" %Xi = Vp, H, %pi = —Vx,H
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The basic underlying idea of LBM

>

e Macroscopic view: continuum hypothesis o Microscopic view: particle dynamics

otp+u-Vp=0, O)ru+u-Vu= —%Vp,... %Xz’ = Vp, H, %pi = —Vx,H

Observation: Complex macroscopic process — microscopically rather simple dynamics.

Promising perspective for simulations!? — Yes, but huge number of particles.
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The basic underlying idea of LBM

>

e Macroscopic view: continuum hypothesis o Microscopic view: particle dynamics

otp+u-Vp=0, O)ru+u-Vu= —%Vp,... %Xz’ = Vp, H, %pi = —Vx,H

Observation: Complex macroscopic process — microscopically rather simple dynamics.

Promising perspective for simulations!? — Yes, but huge number of particles.

AT
e Mesoscopic approach: further simplifications A e % N
— Shrinkage of velocity space: R" — S il : RN N [TTe i q\
(Finite velocity Boltzmann equations) ® le oo (o e | e "_/}
— Discrete dynamical systems — LBM ) . I ° :
——
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The lattice-Boltzmann algorithm Ingredients

e Discrete velocity set S: 'C})' ‘#‘ + O —

D2P9 D2P5 D2P4 D1P3 D1P2
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The lattice-Boltzmann algorithm Ingredients

e Discrete velocity set S: 'C})' ‘#‘ + O —

D2P9 D2P5 D2P4 D1P3 D1P2

] ] densities of fictitious particles
e Primary variables: F(t,x) = [Fs(t,x)]ses _ o g
grid function with #£8 components
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The lattice-Boltzmann algorithm Ingredients

e Discrete velocity set S: 'C})' ‘#‘ + O —

D2P9 D2P5 D2P4 D1P3 D1P2

] ] densities of fictitious particles
e Primary variables: F(t,x) = [Fs(t,x)]ses _ o g
grid function with #£8 components

e Evolution step: tn thil/2 thy1 = tn + At
@

1) Collision
.;¢ 0%0 - 4+ O

2) Transport

Fs(t + At,x + AQZS) — fs(t,X) + [JF(t7X)]§

LV
collision product
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The lattice-Boltzmann algorithm Ingredients

e Discrete velocity set S: 'C})' ‘#‘ + O —

D2P9 D2P5 D2P4 D1P3 D1P2

] ] densities of fictitious particles
e Primary variables: F(t,x) = [Fs(t,x)]ses _ o g
grid function with #£8 components

e Evolution step: tn thil/2 thy1 = tn + At
@

1) Collision
.;¢ 0%0 - 4+ O

2) Transport

Fs(t + At,x + AQZS) — fs(t,X) + [JF(t7X)]§

LV
collision product

e Moments approximate solution of Navier-Stokes eqn. (target eqn.):

R(t,x) = (F(t,x),1) = > Fs(t,x),  Us(t,x) = (F(¢,x),s.)

seS
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The lattice-Boltzmann algorithm (continued)

Mathematical aspect

Simultaneous (coupled) limit

e Scaled finite velocity Boltzmann equation (diffusive scaling):

numeric limit

FVBE(c):  9f +1s- Vf=LJf

singular limit
0 Navier-Stokes eqn.
FVBE(e) <% ‘
(target eqn.)

_ 2
At,Az | 0 /‘ﬁ’;—:e } el 0

LBA(At, Ax)

coupled limit

Part | — Introduction
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Motivation of my work

Incipient questions: consistency (traditional approach via Chapman-Enskog expansion)
convergence (requires stability)
further properties (multiple time scales, scaling, numerical layers)

Example 1: Observation of an initial layer  (simulating decaying eigenmode of Stokes operator)

Taylor-Vortex: Stream-Lines at 1=0 Taylor-Vortex: Relative L1 Error of U

0.035

== “m

»

@«

Y

Error

S

| | | | )
20 40 60 80 100 120
Time

0 2

Example 2: Embedding into context of further problems: e.g. grid coupling

Drieven Cavity Re=40 Level Lines of x- resp. y-velocity (blue/red)

Driven Cavity Re=40 ds=1/16, 1/8, 1/4 normalized velocity tield

1 10

1 7

o 1 9 10

2 3 4 5 8 7 3
outer grid: ds=1/16 middle grid: ds=1/8 inner grid: ds=1/4
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Objects of Analysis Derivation of LB model algorithms & equations

e Wanted: 1D LB algorithm C 2D LB algorithm.
e Reduction: D2P9 algorithm — D1P3 algorithm.
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Objects of Analysis Derivation of LB model algorithms & equations

e Wanted: 1D LB algorithm C 2D LB algorithm.
e Reduction: D2P9 algorithm — D1P3 algorithm.

e Mimick reduction of the INS equation under translational invariance, e.g.: 9,u = 0.

Parallel shear flows (Poiseuille flow) g >

e Fact: If ug(:c, y) — (uoéy)) A Q(t, x, y) — (q(%y)) then u(ta L, y) — (U(%»y))

Furthermore: 2D incompressible Navier-Stokes equation —— 1D diffusion equation.

V-u=0

— 8tu—yc‘92u:q
ou+u-Vu—rvrVu=—-Vp+q x
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Objects of Analysis

Derivation of LB model algorithms & equations

e Wanted: 1D LB algorithm C 2D LB algorithm.
e Reduction: D2P9 algorithm — D1P3 algorithm.

e Mimick reduction of the INS equation under translational invariance, e.g.: 9,u = 0.

Parallel shear flows (Poiseuille flow)

=

o Fact: Ifug(z,y) = (") A alt,z,y) = (“57) then u(t,z,y) = (“G).

0

Furthermore: 2D incompressible Navier-Stokes equation —— 1D diffusion equation.

V-u=0

ou+u-Vu—rvVu=-Vp+q

e Proceed analogously with LB algorithm:

[ ¥
e e
4 o

} — 8tu—uc‘9§u:q

N ?
N ?
N ?

Exploit translational invariance — confine to cross-section — group 9 populations into

3 triples — define new populations.

Part | — Introduction
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Methodology Failing of standard consistency notion

o + ad,v =0
Textbook example: U™ = U — &Lq (U — U ) { n .
j J A J j—1 V] = v(nAt, jAx)
‘/-jn—l—l . ijn ‘/]n o ‘/jn_l . .
~ + a ~ = R, R; = O(At) + O(Ax)

Vanishing residue of exact solution — consistency
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Methodology Failing of standard consistency notion

o + ad,v =0
Textbook example: U™ = U — &Lq (U — U ) { n oy
j J A J j—1 V] = v(nAt, jAx)
‘/}n_‘_l . ‘/}n ‘/Jn . ‘/]n_l , .
~ + a ~ = R; R; = O(At) + O(Ax)

Vanishing residue of exact solution — consistency

F=(F_1, Fo, Fy1) '
LBM: Fo(nt1,5) = Fs(n, j—s)+[JF(n, j=5)], { v=(F1 iR +O’F+1J31+ Err
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Methodology Failing of standard consistency notion

o + ad,v =0
Textbook example: U™ = U — &Lq (U — U ) { n .
j J A J j—1 V] = v(nAt, jAx)
‘Gn+1 . V*jn ‘/Jn o ‘/Jn_l . .
~ + a ~ = R; R; = O(At) + O(Ax)

Vanishing residue of exact solution — consistency

F= (F—17 FO) F—I—l)T

LBM: Fy(n+1,5) = Fs(n,j—s)—l—[JF(n,j—Sﬂs { v = (F_l + Fo + F+1) + Err

Consistency analysis ?

e Transformation to equivalent (moment) systems

e Expansion methods for parameter-depending problems — generalized notion of consistency

1) perturbed equations: ¢
2) discretized equations: h

ur u(o)(nh, jh) + huY(nh, jh) + ... yields unique u®, u(

J

Q

F(n,j) =~ fOMmh,jh) + rfY(nh,jh) + ... f1) not fully determined
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Singular limits and initial layers A LB model equation

Convergence

Goal: Understandi i lar limits: .
([ ] oa naerstan mg smgu ar IHmits { Arlsmg Of |n|t|a| Iayers

e Model problem: D1P2 LB equation with Ef = 1(f; 4 f3)

Ofi —e 0,fi = —e ‘wlfi — Ef]
Oifo + e‘lafo — e w [fg — Ef]
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Singular limits and initial layers A LB model equation

Convergence

Goal: Understandi i lar limits: .
([ ] oa naerstan mg smgu ar IHmits { Arlsmg Of |n|t|a| Iayers

e Model problem: D1P2 LB equation with Ef = 1(f; 4 f3)

Ofi —e 0,fi = —e ‘wlfi — Ef]
Oifo + e‘lafo — e w [fg — Ef]

e Reformulation: 2 X 2 system — equivalent scalar equation

— Mass moment: u = f; + f, 1% moment (flux): ¢ = 6_1(f2 —f1)

— Linear transformation fq, fo <= wu, ¢ leads to equivalent moment system:
oou + 0,0 = 0
o0r¢p + S R T— —e_2w¢

= 62Tafu + Oyu — T@iu =0
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Singular limits and initial layers A LB model equation

Convergence

Goal: Understandi i lar limits: .
([ ] oa naerstan mg smgu ar IHmits { Arlsmg Of |n|t|a| Iayers

e Model problem: D1P2 LB equation with Ef = 1(f; 4 f3)

Ofi —e 0,fi = —e ‘wlfi — Ef]
Oifo + e‘lafo — e w [fg — Ef]

e Reformulation: 2 X 2 system — equivalent scalar equation

— Mass moment: u = f; + f, 1% moment (flux): ¢ = 6_1(f2 —f1)

— Linear transformation fq, fo <= wu, ¢ leads to equivalent moment system:
oou + 0,0 = 0
o0r¢p + S R T— —e_2w¢

= 62Tafu + Oyu — T@iu =0

e BC: bounce-back-type condition for f — hom. Dirichlet condition for u

fo(t,xp) = —f1(t,xp) <  u(t,xp) =0

. IC: [ EES; ] g [ ZES% ] < [ atu(o,,)uio’_')axcb(&-) }

Part Il — Results 3




Singular limits and initial layers (continued)

Fourier ansatz

Reformulated LB equation
EQ: 627'8t2u6 + Oyu, — Ta§u€ =0
BC: wuw.(-,00=0 A ul(,1)=0
IC: u.(0,-) =9 A 0O (0,-)=h

J

)

\

EQ:
BC:

IC:

Target equation
Ou — 70U = 0
u(+,0) =0 A u(-,1) =0

Compatible initialization: h = 9;u(0, ) = 702u(0, -) = 7929(0, -).
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Singular limits and initial layers (continued) Fourier ansatz

Reformulated LB equation ~o> Target equation

) 4

EQ: 627'8t2u6 + Oyu,. — Ta§u€ =0 EQ: O — T@iu =0
BC:  u.(-,0) =0 A u.(-,1)=0 5 ¢ BC u(-,00=0 A u(-,1) =0
IC: u.(0,-)=9g A Owu(0,-)=nh IC:  u(0,-) =g

J \

Compatible initialization: h = 9;u(0, ) = 702u(0, -) = 7929(0, -).

Fourier ansatz using s, (x) := sin(nwx):

Initial cond.:  £2%(0,1) 3 g = > a8y, £%(0,1) 2 h = > Bnsn

Solutions:  wu.(t,x) = Zae,n&)sn(:ﬁ), u(t,z) = ;Jn(tgsn(x)
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Singular limits and initial layers (continued) Fourier ansatz

Reformulated LB equation ~o> Target equation

) 4

EQ: 627'8t2u6 + Oyu,. — Ta§u€ =0 EQ: O — T@iu =0
BC:  u.(-,0) =0 A u.(-,1)=0 5 ¢ BC u(-,00=0 A u(-,1) =0
IC: u.(0,-)=9g A Owu(0,-)=nh IC:  u(0,-) =g

J \

Compatible initialization: h = 9;u(0, ) = 702u(0, -) = 7929(0, -).

Fourier ansatz using s, (x) := sin(nwx):

Initial cond.:  £2%(0,1) 3 g = > a8y, £%(0,1) 2 h = > Bnsn

Solutions:  wu.(t,x) = Zae,n&)sn(:ﬁ), u(t,z) = ;Jn(tgsn(x)

IVPs for the coefficient functions with \,, := 77°n?:
Perturbed problem B Limit problem

EQ: 627-5-6,77, + é-e,n + >\n0-e,n =0 EQ: on+ Apon, =0
IC: 0.,(0) =a, AN 6.,(0) =0, IC: on(0) = ay
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Singular limits and initial layers (continued) Analysis

e Estimate of Fourier coefficient functions: |0 ()| < 2|c| + |Bn|Te™.
Time derivative: | &0, (¢)| < [an|An + 2|8al.

L : - 0 _
e Pointwise convergence of Fourier coefficients: o, (%) <19, on(t) = ape
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Singular limits and initial layers (continued) Analysis

Estimate of Fourier coefficient functions: |o ()| < 2|aw| + |Bn|Te™.
Time derivative: | &0, (¢)| < [an|An + 2|8al.

. : . . 0 —
Pointwise convergence of Fourier coefficients: o, ,(t) <19, on(t) = ape
Set: u(_;(t, :13) = Zn O'e,n(t)Sn($> (generally only solution in a weak sense)

L*-convergence of Fourier-series: g, h € £*(0,1) = wu.(t,-) € £*(0,1)
Continuity in time: u, € C([O, o), £*(0, 1))
Pointwise convergence in time requiring only £*-regularity in space:

el
luc(t, ) — w(t, )2 == 0
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Singular limits and initial layers (continued) Analysis

Estimate of Fourier coefficient functions: |o ()| < 2|an| + |Bn|Te™.
Time derivative: | &0, (¢)| < [an|An + 2|8al.

Pointwise convergence of Fourier coefficients: o, ,(t) <19, on(t) = ape
Set: u(_;(t, :13) = Zn O'e,n(t)Sn($> (generally only solution in a weak sense)
L*-convergence of Fourier-series: g, h € £*(0,1) = wu.(t,-) € £*(0,1)
Continuity in time: u, € C([O, o), £*(0, 1))

Pointwise convergence in time requiring only £?-regularity in space:

elO
luc(t, ) — w(t, )2 == 0

Convergence rate of Fourier coefficients: sup;¢g o) loen(t) —o(t)| < Ce’
+ stronger regularity assumptions => convergence rate for wu..

(In particular: uniform convergence in time and space follows.)

Transfering properties from (o ,)n to u.:

: . o leading part <— finitely many terms, direct transfer.
Split Fourier series into _g P oo Y Y _
tail «— infinitely many terms, but converging.
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Singular limits and initial layers (continued) Convergence theorem

C O Nvergenc.

Theorem: If A := > o |ap|Ay < 00 and B := > -, [Bn] < oo, there exist
constants C,n > 0 depending only on T and on the initial data via A and B such that
forall 0 < e < n:

sup |luc(t, ) — w(t, )| < Ce.
t€[0,00)
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Singular limits and initial layers (continued) Convergence theorem

C O Nvergenc.

Theorem: If A := > o |ap|Ay < 00 and B := > -, [Bn] < oo, there exist
constants C,n > 0 depending only on T and on the initial data via A and B such that
forall 0 < e < n:

sup |luc(t, ) — w(t, )| < Ce.
t€[0,00)

Remarks:
e u.(t,-) not defined as solution of PDE but via Fourier series (convergence proof!).

e Assumptions on Fourier coefficients (ap)n, (Bn)n =

regularity conditions: g € C*([0,1]), h € C([0,1]).

generally:  pointwise on (0, co)
e Convergence of O;u, : compatible init.:  uniformly on [0, c0)
incompatible init.:  uniformly on [#, c0)  for arbitrary 8 > 0

compensates incompatible initialization.

Initial layer: '
® Initial layer { decays rapidly.

Part Il — Results 11



Singular limits and initial layers (cont.) Resolution of the initial layer by a two-scale expansion

e Ansatz: o.(t) = 0'(4,t) + S0P (L,t) +

e Motivation: consider plots of %ae for different €

5 T 5
|:| ......-..-.-....;_..-:-..__.-:.. |:|
w1 *
o G 7 A S
__1-:-"' ----- ﬁ"’ . ‘\
:" u :f . . :‘__10 R
s 1Y /LR REEERE N,
oM. L R - NG
V. . E E 2o e
'ﬁ[ """" CTTT T Tt o *"-T.*'r:-_:
- - : : o : : 1
u} s . = | 15 Q ooq e 0oz Q 0z . 04 2 el
slow time ¢ close-up fast time t /€
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Singular limits and initial layers (cont.) Resolution of the initial layer by a two-scale expansion

e Ansatz: o.(t) = 0(0)(6%,15) -+ 620'(2)(6%,t) + ..

e Motivation: consider plots of %ae for different €

T 5
|:| .-.......-.-....;_..-:-..__.-:.. |:|
| Pl '
= 3
I ,;;'."f : N o
IELIRERE g - .
Vo4 : R :
s 1Y /LR REEERE N, :
My " NG
i : : o) o
45[ ------- T TR R
u} s = | 15 Q ooq e 0oz Q 0z 04 2 el
slow time ¢ close-up fast time t /€

2
e Qutcome: structure of order functions 0(2k)(t/€2, t) = g_m’/e qb(%)(t)J + \C(%)(t)J

irre‘grular regular
e Hierarchic ODE-system defining the asymptotic order functions:
-(0) ©0) _
e’ 6 = 0 (O 4 x¢c@ =0
C(O)(O) — o
2 ¢(2) — )\¢(2) =0 C(Q) e Ac(2) _ _Té:(o)
»(0) = 7¢O0) — 78 c@(0) = —¢?(0)

Part Il — Results 13



Stability investigations Matrix formulation

e LB algorithm — explicit iteration: F(n 4+ 1) = EF(n) = E""'F(0)

LB (L 0) (aI 51) . %m /ﬁ
A OVR »" fyIVcSI g gw% SR

transport collision
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Stability investigations Matrix formulation

e LB algorithm — explicit iteration: F(n 4+ 1) = EF(n) = E""'F(0)

. (L 0) (aI 51) L %m/ﬁ
* "~ \o R I 61 " s e w T a e w
) transport A fycolﬁgon g Mv%

. a=1-L1ua +r
e Collision block: ? ( )
Y= sw(l+7r)

hyperbolic scaling

e Scaling: r=a, Ax = h, At =h

Otv + adzv = 0

G = %w(l — )
6 =1-— %w(l —r)
parabolic scaling
r = ah, Ax = h, At = h?
Otv + a0zv — (% — %)8%1) =0

Part Il — Results
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Stability investigations

Matrix formulation

e LB algorithm — explicit iteration: F(n 4+ 1) = EF(n) = E""'F(0)

o (T 0 (ol g
~\0 R/ \HI I

NV NV
transport

collision

azl—%w(l—i—r)

Collision block:
%w(l + )

"Y:

hyperbolic scaling
r=a, Ax =h, At =nh
Otv + adzv = 0

Scaling:

Computing eigenvalues of E

spec(L) = spec(R) = {w, w’, ...

parabolic scaling
r = ah, Ax = h, At = h?
OtV + alzv — 1 _ %)8%1) =0

w

2mi

Jw' ) w:=eN

Discrete Fourier transformation — characteristic polynomial

A ]ﬁl [(ozwm — N (6w™ — \) — B'y]

Xw,r(AEQﬂ-Tm)

Part Il — Results

16



Stability investigations (continued) Spectral limit set |

XX @) 1= A"+ [(w = 2) cos() + iwrsin(¢) | A + (1 — w)

Spectral limit set:

spec(E) C 6(w,r) := {)\ S (C‘ J¢ € [0, 27) with xu.r(A; ) = O}

05|

(Loading spectrum_omega_0p6.avi)

- 0 . 1 -1 0 1 -1 0 .
(Loading spectrum_omega_lp6.avi)
a'h=06 a'h=1 ath=18 =

a’h=1 ah=12

1 1

05} 055

of) - -
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spectrum_omega_0p6.avi
Media File (video/avi)


spectrum_omega_1p6.avi
Media File (video/avi)


Spectral limit set Il

Stability investigations (continued)
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spectrum_a_0p3.avi
Media File (video/avi)
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Media File (video/avi)


Stability investigations (continued) CFL-condition and stability

Stability . 3K >0: Vgrids, : Vn € Ny, : NEM, < K

Part Il — Results 19



Stability investigations (continued) CFL-condition and stability

Stability . 3K >0: Vgrids, : Vn € Ny, n : NEM, < K

Part Il — Results 20



Stability investigations (continued) CFL-condition and stability

Stability : dK > 0: Vgrids, : Vn € Ny, h : HEZHh < K
.. analytic numeric
FL : . .

C condition domain of depend. domain of depend.
h . .
= =1 hyperbolic scaling

3-point stencil schemes: = la| < % = hh . _ _
T =5 parabolic scaling
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Stability investigations (continued) CFL-condition and stability

Stability ; dK > 0: Vgrids, : Vn € Ny, h | ER L < K
.. analytic numeric
FL : . :

CFL condition domain of depend. domain of depend.
h . .
# =1 hyperbolic scaling

3-point stencil schemes: =- la| < &% = hh . _ _
3 =7 parabolic scaling

Standard FDM: stability ¥ <=  CFL condition T S N s

D1P2, =1 g
stability N CFL condition
Result for LBM: D1P3, 651
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Stability investigations (continued) CFL-condition and stability

Stability : JK > 0: Vgrids, : Vn € Np, h : JEY L < K
o analytic numeric
CFL condition: domain of depend. domain of depend.
h =1 hyperbolic scaling
3-point stencil schemes: =- la| < &% = hh . _ _
3 =7 parabolic scaling
Standard FDM: stability <=  CFL condition
D1P2, =1 £,
stability N CFL condition
Result for LBM: D1P3, 651
i) w € [0,2]
Theorem 1: S(w,r) C D1(0) <= (for 8 = 1)
i) re[-1,1]

Theorem 2: The advective-diffusive and the purely advective DIP2 lattice-Boltzmann

scheme are stable w.r.t. the €o-norm if and only if 0 < w < 2 and —1 < r < 1, or
w = 0.
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Stability investigations (continued) Proof of stability result

Proof of theorem 1: Estimate zeros of x. »(A; @):

Aow,r(@) = —%[(w — 2)cos(¢) + iwr sin(qﬁ)] + \/% [(w — 2)cos(¢) + iwa sin(gb)]2 — (1 —w)

Other idea — consider special cases: w = 1 or ¢ € {0, 7w} — comparison function
Theorem of Rouché — general case. |
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Stability investigations (continued) Proof of stability result

Proof of theorem 1: Estimate zeros of x. »(A; @):

Aow,r(@) = —%[(w — 2)cos(¢) + iwr sin(qﬁ)] + \/% [(w — 2)cos(¢) + iwa sin(gb)]2 — (1 —w)
Other idea — consider special cases: w = 1 or ¢ € {0, 7} — comparison function.
Theorem of Rouché — general case. |
Proof of theorem 2:

e Discrete Fourier trafo & permutation of indices:

E = blockdiag (M ith M(o) = ae'? e’
= blockdiag( (¢))¢6%{0,1,...,N—1} Wi (¢p) = eIt et

= IE"[[2 < sup [[M"(¢)ll2
$€[0,27]
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Stability investigations (continued) Proof of stability result

Proof of theorem 1: Estimate zeros of x. »(A; @):

Aow,r(@) = —%[(w — 2)cos(¢) + iwr sin(qﬁ)] + \/% [(w — 2)cos(¢) + iwa sin(gb)]2 — (1 —w)
Other idea — consider special cases: w = 1 or ¢ € {0, 7} — comparison function.
Theorem of Rouché — general case. |
Proof of theorem 2:

e Discrete Fourier trafo & permutation of indices:

E = blockdiag (M ith M () = ae'? e’
= bloc 1ag( (¢))¢€2WW{0,1,...,N—1} wit (¢p) = e :

= IE"[[2 < sup [[M"(¢)ll2
$€[0,27]

e Family of continuous functions: n € N:  f,, : [0,27] —» R, fo.(®) := ||[M"(9)]2
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Stability investigations (continued) Proof of stability result

Proof of theorem 1: Estimate zeros of x. »(A; @):

Aow,r(@) = —%[(w — 2)cos(¢) + iwr sin(qﬁ)] + \/% [(w — 2)cos(¢) + iwa sin(gb)]2 — (1 —w)
Other idea — consider special cases: w = 1 or ¢ € {0, 7} — comparison function.
Theorem of Rouché — general case. |
Proof of theorem 2:

e Discrete Fourier trafo & permutation of indices:

E = blockdiag (M ith M () = ae'? e’
= bloc 1ag( (¢))¢€2WW{0,1,...,N—1} wit (¢p) = e :

= [[E"[2 < sup [[M7(¢)]2

$€[0,27]

e Family of continuous functions: n € N:  f,, : [0,27] — R, fn(®) := |[|M"(®)||2
e Theorem 1 p(M(¢)) <1 & diagonalizibility of M (¢):
= pointwise boundedness of (f,)nen, i.€e.:

3Cy >0, VneN: Sup M (@)]]2 = Sup [fn(@)ll2 < Co
ne ne
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Stability investigations (continued) Proof of stability result

Proof of theorem 1: Estimate zeros of x. »(A; @):

Aow,r(@) = —%[(w — 2)cos(¢) + iwr sin(qﬁ)] + \/% [(w — 2)cos(¢) + iwa sin(gb)]2 — (1 —w)
Other idea — consider special cases: w = 1 or ¢ € {0, 7} — comparison function.
Theorem of Rouché — general case. |
Proof of theorem 2:

e Discrete Fourier trafo & permutation of indices:

E = blockdiag (M ith M () = ae'? e’
= bloc 1ag( (¢>)¢€2WW{0,1,...,N—1} wit (¢p) = e :

= [[E"[2 < sup [[M7(¢)]2

$€[0,27]

e Family of continuous functions: n € N:  f,, : [0,27] — R, fn(®) := |[|M"(®)||2
e Theorem 1 p(M(¢)) <1 & diagonalizibility of M (¢):
= pointwise boundedness of (f,)nen, i.€e.:

3Cy >0, VneN: Sup M (@)]]2 = Sup [fn(@)ll2 < Co
ne ne

e Principle of uniform boundedness: =- local boundedness.
e Compactnessof [0, 2] = global boundedness. H
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What else — further results

Long time behavior of the advective D1P2 LB scheme

Observation: linear time-scale (advection) <> cubic time-scale (dispersion)

tin = m1h1 = noho

1.2 T

blue circles -> grid 1: 60 nodes (coarse) l
"I red dots -> grid 2: 120 nodes (fine) )
0ar &
06 =
"(Loading buj

1] 0.z

Prediction: comparison

0.4 0.6 0.8

. Forldnodeszon |
# iteartion :50

o 0z 04 06

50 iteratio

0.8 1 1] 0z

ns 800 iterations

12

1.2

3 3

blue circles -> grid 1:

red dots

-> grid 2: 120 nodes (fine)

60 nodes (coarse)

4}

0.z

04 0.6 0.4

regular «<» twoscale expansion (200 nodes)

06

04

Gz et

a

-0z

-04

# grid nodeszzoo |
# fredrtion 4000

4000 iterations

d
aj

100000 iterations
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bump_linear_time.avi
Media File (video/avi)


bump_cubic_time.avi
Media File (video/avi)


Conclusion

dummary

e LBM: PDE solver inspired by pseudo-particle dynamics (collision/transport step)

e Motivation: lack of solid understanding despite of rich engineering experience
— elimination of numerical artefacts, basis for systematic extensions

e Important analytic tool: asymptotic expansions

® Presented results:
— better comprehension of initial layers (generation, long time impact)

— exemplarily: stability properties of an LB model algorithm
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Motivation of my work Example 1

Example: Observation of an initial layer  (simulating decaying eigenmode of Stokes operator)

Taylor-Vortex: Stream-Lines at Taylor-Vortex: Relative L1 Error of U

0.035

— Unusual behavior: rapid decrease of error instead of growth.

ol
0

L L L I 1
20 40 60 80 100 120

o

— Composition of numeric error displaying several time scales:
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Motivation of my work

Example 1

Example: Observation of an initial layer

o

'
@

s

Taylor-Vortex: Stream-Lines at t=0

0

(simulating decaying eigenmode of Stokes operator)

Taylor-Vortex: Relative L1 Error of U

0.035

—— 20x20 grid
— 40x40 grid
== 80x80 grid

|
60
Time

— Unusual behavior: rapid decrease of error instead of growth.

— Composition of numeric error displaying several time scales:

feature t(n) time scale interpretation evolution governed by ...

plateau nh? slow time (plotted) | standard discretization error inhomogeneous Stokes eq.
'beat-bellies’ | nh fast time initial layer of FVBE 'wave-like' PDE (pseudo-sound)

decay n discrete time discrete initial layer |1 — w|™
oscillations n discrete time discrete initial layer (=)™
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Motivation of my work Example 1

Example: Observation of an initial layer  (simulating decaying eigenmode of Stokes operator)

Taylor-Vortex: Stream-Lines at t=0 Taylor-Vortex: Relative L1 Error of U

0.035

7 TS | g

| | | )
60 80 100 120
Time

0

— Unusual behavior: rapid decrease of error instead of growth.

— Composition of numeric error displaying several time scales:

feature t(n) time scale interpretation evolution governed by ...

plateau nh? slow time (plotted) | standard discretization error inhomogeneous Stokes eq.
'beat-bellies’ | nh fast time initial layer of FVBE 'wave-like' PDE (pseudo-sound)

decay n discrete time discrete initial layer |1 — w|™
oscillations n discrete time discrete initial layer (=)™

Incipient questions: consistency (traditional approach via Chapman-Enskog expansion)
convergence (requires stability)
further properties (multiple time scales, scaling, numerical layers)

Part | — Introduction 3



Example 2

Motivation of my work (continued)

Drieven Cavily Re=40 Level Lines of x- resp. y-velocity (blue/red)

10

=1/16, 1/8, 1/4  normalized velocity tield

Driven Cavity Re=40 ds:

Embedding into context of further problems: e.g. grid coupling

2 3 4 5 ) 7 8 9 10
outer grid: ds=1/16 middle grid: ds=1/8 inner grid: ds=1/4

1

Domain decomposition — coupling conditions for target equation — translation into interface conditions

for LB primary variables — interface layers in the case of incompatibilities
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Example 2

Motivation of my work (continued)

Embedding into context of further problems: e.g. grid coupling

Drieven Cavily Re=40 Level Lines of x- resp. y-velocity (blue/red)

1/16,1/8,1/4  normalized velocity tiekd

Driven Cavity Re=40 ds:

e R R

ST
raetrR e R RRNRRANY
Skgféﬁﬁﬁzﬁﬁﬁwﬁﬁléﬁ%w

W.
¥
i

10

outer grid: ds=1/16 middle grid: ds=1/8 inner grid: ds=1/4

Domain decomposition — coupling conditions for target equation — translation into interface conditions

for LB primary variables — interface layers in the case of incompatibilities

o)
o0
Q
s
]
-
fras}
()]
©
pa
Q
c
Q
@)
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Example 2

10

7

4 5 8 7 8

3
outer grid: ds=1/16 middle grid: ds=1/8 inner grid: ds=1/4

Domain decomposition — coupling conditions for target equation — translation into interface conditions

Drieven Cavily Re=40 Level Lines of x- resp. y-velocity (blue/red)
2

1

Driven Cavity Re=40 ds=1/16, 1/8, 1/4 normalized velocity tield

Embedding into context of further problems: e.g. grid coupling

Motivation of my work (continued)

for LB primary variables — interface layers in the case of incompatibilities

General strategy

understand & explain
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Example 2

10

7

4 5 8 7 8

3
outer grid: ds=1/16 middle grid: ds=1/8 inner grid: ds=1/4

Domain decomposition — coupling conditions for target equation — translation into interface conditions

Drieven Cavily Re=40 Level Lines of x- resp. y-velocity (blue/red)
2

1

Driven Cavity Re=40 ds=1/16, 1/8, 1/4 normalized velocity tield

Embedding into context of further problems: e.g. grid coupling

Motivation of my work (continued)

for LB primary variables — interface layers in the case of incompatibilities

General strategy

understand & explain
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Example 2

10

7

4 5 8 7 8

3
outer grid: ds=1/16 middle grid: ds=1/8 inner grid: ds=1/4

Domain decomposition — coupling conditions for target equation — translation into interface conditions

Drieven Cavily Re=40 Level Lines of x- resp. y-velocity (blue/red)
2

1

Driven Cavity Re=40 ds=1/16, 1/8, 1/4 normalized velocity tield

Embedding into context of further problems: e.g. grid coupling

Motivation of my work (continued)

for LB primary variables — interface layers in the case of incompatibilities

General strategy

understand & explain
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Example 2

10

7

4 5 8 7 8

3
outer grid: ds=1/16 middle grid: ds=1/8 inner grid: ds=1/4

Domain decomposition — coupling conditions for target equation — translation into interface conditions

Drieven Cavily Re=40 Level Lines of x- resp. y-velocity (blue/red)
2

1

Driven Cavity Re=40 ds=1/16, 1/8, 1/4 normalized velocity tield

Embedding into context of further problems: e.g. grid coupling

Motivation of my work (continued)

for LB primary variables — interface layers in the case of incompatibilities

General strategy

unde’r’éiand & explain
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Methodology (continued)

A general approach

e General setup: n € 'H C (0,1]:

A, X, — X, Az, =0

Wanted: asymptotic behavior of =, for n — 0

. .. n—0 __
— Singular limit: =, — o € Xj
: formall
while A, =% Ay : X — X,

but Apxg = 0 ill-posed

Part | — Introduction
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Methodology (continued) A general approach

e General setup: n € H C (0,1]: A,: X, — X,, Ayx, =0
Wanted: asymptotic behavior of =, for n — 0
— Singular limit: x,, 729, Ty € Xy

formally

while A, —— Ay : X9 — Xo but Apzg = 0 ill-posed
e Comparison function — ansatz: regular expansion

ygn] = y(o) + ny(Q) 4+ ...+ nny(n) with y(k) c X

: : : X discret fficient functions
— Alternatively: irregular expansion: y(k) = yf?k) S { Xn (discrete coefficient functions)

o (e.g. multiscale expansion)
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Methodology (continued) A general approach

e General setup: n € H C (0,1]: A,: X, — X,, Ayx, =0
Wanted: asymptotic behavior of =, for n — 0
— Singular limit: x,, 729, Ty € Xy

formally

while A, —— Ay : X9 — Xo but Apzg = 0 ill-posed
e Comparison function — ansatz: regular expansion

ygn] = y(o) + ny(Q) 4+ ...+ nny(n) with y(k) e Xo

: : : X discrete coefficient functions
— Alternatively: irregular expansion: y(k) = y(k) S n _ _ )
77 X0y (e.g. multiscale expansion)

[n]

— Minimize residue: 7, := Ay (Rnygn]) R, : Xo — X, (restriction/projection)

e.g. 7“7[7"] = O(n") = n “consistency order”
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Methodology (continued)

A general approach

General setup: n € H C (0,1]: A, : X, — X,, Ayx, =0
Wanted: asymptotic behavior of z, for n — 0
Singular limit: x,, 729, Ty € Xy

: formall :
while A, =% Ag: Xg — Xy but Agzg = 0 ill-posed
Comparison function — ansatz: regular expansion

g o= 4@ oy ® gy with y* € X,

X discrete coefficient functions
Alternatively: irregular expansion: y(k) = y(k) € { X” (discrete coefficient functions)
0

(e.g. multiscale expansion)

Minimize residue: 7“7[771] = A, (Rnygn]) R, : Xo — X, (restriction/projection)
e.g. 7“7[7"] = O(n") = n ‘“consistency order”

Asymptotic similarity:

HR”%[?n]_x”HXn = [[(A," 0 ARy, _(Av;loAn)anXn
_ n stabili
= At - a0, < Lip [, o

Remarks: non-uniqueness of order functions (high order regular y( ), irregular y%k))

ambiguity of consistency order n“Apxz,) = 0 < A,x, = 0, crude standard estimate

Part | — Introduction
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What else — further results (continued)

Analysis of a numerical boundary layer

dz2

S
o)

— b-point stencil discretizing (f?

— incompatibility at the boundary _

— nearest neighbor extrapolation

in ghost node

@ (z) = —4n?sin(2mz) +BCs

0 01 02 03 04 05 06 07 08 09 1

Error (periodic BCs)

— u(x) = sin(27x)

0.02

0.015

0.01 b

0.005
bt A
20.005[{ ot PO
~0.01 gt

0015} T I

) H . L L H H " L
0 01 02 03 04 05 06 07 08 09 1

-0.02

Error (homog. Dirichlet BCs)
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What else — further results (continued)

Analysis of a numerical boundary layer

%u(az) — —47° sin(27x) +BCs — u(x) = sin(27x)

0.02

£
o)
e

0.015

0.01 b
0.5
0.005

: - . d N R - .
— b-point stencil discretizing — o 3
poi il di izing 2

0008\ B

— incompatibility at the boundary _,

-0.01
— nearest neighbor extrapolation ~0.015- R N A
H - ; ; ; ; ; ; ; ; ; —0.02- & i : ; : : : ; ;
in ghost node 5 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Error (periodic BCs) Error (homog. Dirichlet BCs)

e Expansion of v requires order functions defined by purely discrete equations:
Apv = f approximate u by oM = 11(0)—|—h(ﬁ(1)—|—321)) +...+n" (ﬂ(n)—i—sgn))
e Standard stability estimate too crude — damping property

-1 n h—0 —1 [n e—0
1A oo 17 floe =20 but  |A; )0 =2 0
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Analysis of a D1P3 equation & algorithm

e D1P3 model = no equivalent scalar equation!

e Regular asymptotic expansion:

frfO 4 ef e ™

_n]

e Residual: 8, + ¢ 159, " = =2 gflnl 1 (7]

e Determine f© () . such that rl" € O(e”) with « as large as possible.
FO = yw

o f— u with Ou — %éﬁu =0 f = _ro,usw
F2) = T28§u (52W — %W)

= consistency: (f,1) = w.

e Justification of regular expansion: consistency + stability < convergence.

f.eCl (Xr,F) solution of LBE
e Theorem: - per _ _ _ _ N
fe € C o (X1, F) approximate solution of LBE with residual € O(e®)

Hf€(07 ) - ',Fe(o, .)”£2(X,.7:) < Koea

= sup [If(t,) = fo(t, )l p200. ) < Koc”
t€[0,T]
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Historic and thematic context of LBM

Discrete Dynamical Systems
Cellular Automata
"Game of Life"
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Historic and thematic context of LBM

Discrete Dynamical Systems
Cellular Automata
"Game of Life"

Lattice Gas Automata

—= Simulation of flows
with booleans
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Discrete Dynamical Systems
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—= Simulation of flows
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Booleans —=Reals

Historic development

Lattice
Boltzmann
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Historic and thematic context of LBM

Statistical physics: kinetic theory of fluids
Many particle systems {Hamiltonian/ODE system)
Microscopic —> Mesoscopic
Boltzmann equation (PDE)

Collision
rules

Discrete Dynamical Systems
Cellular Automata
"Game of Life"

y

Lattice Gas Automata

—= Simulation of flows
with booleans

Booleans —=Reals

Historic development

Lattice
Boltzmann

Methods
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Historic and thematic context of LBM

Microscopic —> Mesoscopic
Boltzmann equation (PDE)

Statistical physics: kinetic theory of fluids
Many particle systems {Hamiltonian/ODE system)

Different scalings

—= infinity

Number of collisions

Collision expansion

rules

Discrete Dynamical Systems
Cellular Automata
"Game of Life"

y

Lattice Gas Automata

—= Simulation of flows
with booleans

=

Fluid mechanics: macroscopic world

Description by conservation/balance laws
{e.g. Navier-5Stokes, diffusion equation)

Hilbert/Chapman-Ensk

Booleans —=Reals

Historic development

Lattice
Boltzmann

Methods
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Historic and thematic context of LBM

Microscopic —> Mesoscopic
Boltzmann equation (PDE)

Statistical physics: kinetic theory of fluids
Many particle systems {Hamiltonian/ODE system)

Different scalings

—= infinity

Number of collisions

Collision
rules

Discrete Dynamical Systems

expansion
Finite

velocity set

Relaxation type

Cellular Automata (BGK) collision

operator

=

Fluid mechanics: macroscopic world

Description by conservation/balance laws
{e.g. Navier-5Stokes, diffusion equation)

Hilbert/Chapman-Ensk

"Game of Life"

y

Lattice Gas Automata

—= Simulation of flows
with booleans

¢

Booleans

——Heals

Historic development

Lattice
Boltzmann

Methods
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Historic and thematic context of LBM

Different scalings

Statistical physics: kinetic theory of fluids —
Many particle systems {Hamiltonian/ODE system) Number of callisions

Fluid mechanics: macroscopic world

Microscopic —» Mesoscopic —= infinity Description by conservation/balance laws
Boltzmann equation {PDE) == (e.g. Navier—5tokes, diffusion equation)
Hilbert/Chapman-Ensk A
Collision expansion
rules Finite :
velocity set Asymptotic .
Discrete Dynamical Systems analysis Mathematics.
Relaxation type Theory of hyperbolic/parabolic PDEs
Cellular Automata (BGK) collision Relaxation equations/schemes
"Game of Life" operator Finite differences (consistency/ stability)
V ¢ Convergence analysis
Lattice Gas Automata
—=  Simulation of flows Lattice
with booleans Boltzmann
Booleans —Reals
— =S Methods
Historic development
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