Theoretic Foundations of Grid-Coupling for
Lattice-Boltzmann-Methods

Asymptotic Investigation of the LB Method - Part |

Martin Rheinlander

Depuis un demi-an beaucoup s’est changé,
dans la recherche je suis plongé.

Vraiment, ca progresse mieux,

merci la Vie, merci au Dieu !

Comme Christ est descendu portant la lumiere,
la nouvelle méthode a brisé la barriere.

Peu a peu tout devient claar,

enfin, plus rien des mystéres !

Doktoranden-Seminar
8th December 2003



Project

Task: Develop grid-coupling algorithms for the LB method

Motivation: _
— A-priori grid refinement for flow simulation with LB

— Asymptotic Analysis: suitable tool to analyze numerical schemes like LB 7

Strategy: _ _
— understand simple cases completely (rigorous)

— generalize to complicated problems (heuristic)

Tools: Asymptotic Analysis, Domain Decomposition
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What am | doing ?

1) Fundamentals of Domain Decomposition for Poisson and Stokes equation
2) Asymptotic analysis of the continous/discrete D1P3 model for DAR equation

3) Asymptotic analysis of the continous/discrete D2P9 model for Oseen equation

4) Other LB models: D1P2, D2P4, D2P8
5) Application of Equivalent Moment System: boundary and coupling conditions

6) Strict Convergence for the continous D1P2 model
— Discussion with Prof. Unterreiter, Berlin

7) Stability of LB algorithm « Spectrum of LB evolution matrix
8) Special analytic solutions as benchmarks

9) Matlab programming: testing uniform and coupled grids (D1P3, D2P4, D2P9)

Supervisor: Prof. Junk, Saarbriicken
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The Boltzmann Equation

e Mesoscopic description of many particle systems:
$:10,T) x Q xR? — RBL particle density in phase space

e Evolution of ¢(t,x,v): Op+v-Vyx = Q(p,0) (binary collisions)
e macroscopic quantities: p(t,x) = [o3 ¢ d®v, u(t,x)=..., T(t,x) =

e free stationary states (equilibrium) < constant macroscopic quantities <
time & space independent solution, Maxwellians p(p,u,T): Q(u, ) =0

Simplification of the Collision operator:
— System tries locally to relax towards equilibrium

- Q(¢,9) — 2 (n — ¢)

. . Scahn
Fact: Mesoscopic Description Continuum Mechanics
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The Idea of Lattice Boltzmann Methods

e Velocity space (Tangential Space of x € 2) — finite set of discrete velocities
= “Particles” move only in discrete directions with fixed speeds (/attice)

e Ingredients of LB-type equation systems:

— Finite set of velocities S
— Weight function w : S — Ry
— Structural equations = symmetry properties of the tensors T},:

T i= YesW(s) 8205
n times

— Density functions or populations: p:[0,T) x Q2 xS — R

— Moments of p w.r.t. s € S (macroscopic = averaged quantities)

— Counterpart of Maxwellians: equilibrium q depending on moments

— Sytem of #S coupled equations: 9;p + s-Vp = %(q — D)

Remark: Different analysis despite of algebraic resemblence to Boltzmann

Question: What is the appropriate mathematical context / background?
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Singular Perturbation

Formal Definition — cf. J.D. Murray, Asymptotic Analysis AMS 48
Problems (P.) : EQ.(v,z) =0, AC. and (P): EQ(v,z) =0, AC

u.: solution of (P.), u: solution of (P)

(P.) is a regular perturbation of (P) :< w. analyticin e N wu. LY
If ue — u in weaker topology: (P.) singular perturbation of (P).

e Not always (Pg) = (P) !
e Indicator: ¢ multiplies highest derivative

e Textbook Examples:
— Boundary layer for convection dominated diffusion:
(P): €d*u+0,u=0 u(0)=a u(l)=b «—— (P): O,u =0u(0) =a

— Slightly damped harmonic oscillator < frictionless harmonic oscillator
(for unbounded time interval)
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Relaxation Formulation

Scalar conservation law:

dru + 0, (f(uw) = 0

1. Introduce flux as new variable: v = f(u)
2 Oru + Oyv = 0 Oru + 0,v — 0
0 = f(u) — v e (Oru + adyu) = f(u) — v
3. Relaxation form: Jiu + 0,v = 0
Ohu + adyu = I (f(u) — v)

Pros & Cons — cf. R. LeVeque ....

nonlinear flux terms shifted into source terms =-
= simple structure of characteristics

no nonlinear Riemann solver necessary
— larger system of equations

— stiff source terms

linear hyperbolic part
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The D1P3 Model - Notation and Definitions

e Discrete velocities: s € {sg,s1,82} =1{0,—1,1} =:' S

o Weights: w = w(s) € {wo, wy,wa} = {21 L L n>1

e Populations: pg, p1, p2 € F(la,b] x |0,T)) pr(t,x) = p(t, x, sk)
(Primary variables occuring in the LB equation!)

e Collision time: 7 € F([a,b] x [0,T)) and collision frequency w := 71 7 >0

e External source: k € F([a,b] x [0,T))

e The quantity of interest or the macroscopic quantity:
u(t,x) :=po(t,x) + p1(t,x) + p2(t,x) we F(la,b] x[0,T))

(E.g. density V concentration \ velocity component (for parallel shear flows))
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The D1P3 Model - LB Equation

e Central equation: Evolution Equation for the populations

€2 0¢po — w(qo (u) — po) + ewok
e0p1 — €dp1 = w(qi(u)—p1) + Ewik
€2 Op2 + €0pp2 = w(qa(u) —pz2) + Ewak

(Appropriate IC for p1, p2, ps = later!)

e Possible kinetic B.C.:

Periodic: p2('7a) — p2(°,b) pl('7b) — pl('va’)

Bounce-Back Type 1: pa(-,a) = — pi(a)  pi(0) = — pa(,b)

Bounce-Back Type 2: p2('7 CL) — pl('7 CL) pl('a b) — p2('7 b)
Try to show:

u is related to the solution v € F([a,b] x [0,T)) of the following Diffusion-
Advection-Reaction (DAR) limit-equation in conservation form:

Oy v + (1,;(3’0 — V@xv) +cv =k BC&ICforw
Given coefficients: Diffusivity v, Advection a, Reactivity ¢ € F([a, b] X [0,T))
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The D1P3 Model - Equilibrium

e Equilibrium couples LB equations: q = q(u,s) = q(po, P1, P2, S)
e Equilibrium determines limit-equation in detail:

q(u,s) = q”(u,8) + eq?(u,s) + ¢ q’(u,s)

= WU + € nwsau — GQWTCU

e Moments of discrete velocities w.r.t.the weights (structural equations):

w =1 ws =0 wsZ=1 Summation always over s € S
n y

e Moments of discrete velocities w.r.t. the equilibrium:

>q” = >Yosq? = 0 &P = Ju
Sqd = 0 Ssq? = au S s2qt = 0
St = —rcu Ssqf = 0 Ss?gft = —2i71cu
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Formal Asymptotic Expansion: 0" & 15¢ Order

. Regular asymptotic expansion: p = p® + epM + &2 p® +. .. (x) =
Asymptotic expansion of u:  uD(t,z) = pW(t, z,s) [ >0

. Plug (%) in subsequent LB-equation:

e 0p + €s0,p = w(q”(u) + e g (u) + € qf*(u) — p) + ewk

. Equate terms of equal power in e:
- 0t order: p@ = ¢P(u?)
- 1%t order: pM) = P (M) + ¢4 @®) — 750,p®
= q”@®) + ¢ (@) — 759,9" (")

. Moments needed to go on with 2™? order:

S pM =y Y sp® =gy 19 40 3 g2pM) = Ly
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Formal Asymptotic Expansion: 2"¢ Order
0p? + s 9,pM = w (P (W?) + ¢*(uV) + W) — p®) + wk

Sum over s € S using moment relations = evolution equation for u(®):
Orul® + 0,(au® —Z9,ul®) + cu® =k (%)
Observations:
1. 49 is an exact solution of the limit equation

2. Unfortunately, u(0) is not accesible. . .

T

But: Since u = ul® + O(e), u is at least a 15" order approximation! v =Z

In order to obtain the 37¢ order, solve for p(?),
p® = Pu®) + A + Fu®) — 10,p0 — r9p® + rwk
and compute the moments using (x):
Sp@ = 0@ Yep® — au®) — 1g,4O

S os?2p?) = Ly — 22175 (qul®) — 29,40)
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Formal Asymptotic Expansion: 37¢ Order

Op + s 0,p? = w (¢P@W®) + g (u?) + ¢FP) — p®))
Sum over s € S using the moment relations = evolution equation for u(1):
Oy ull) + 8x<au(1)—%6xu(1>) + cul® =0
Observation: u(!) satisfies the homogeneous limit equation.
Assumptions:
i) BC for populations imply homogeneous BC for u(1)

i) IC for populations imply zero IC for uM i.e.: u(1(0,-) =0

Conclusion: Therefore V¢ > 0: uV(¢,-) =0 = u=1u" +0(&).
u approximates the solution of the limit equation up to terms of order O(e?)!

Intention: Try to estimate leading order of error by computing u(2).
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Formal Asymptotic Expansion: Higher Orders

e Derive the evolution equation for u(¥),[ > 2 recursively:

— Suppose pl‘*1) and its moments to be known from the previous iteration
— Sum (241)*" order of LB equation overs € S: 9; uV+> s ptth el =0

o Definition: flux of I'" order: f() := au® — 79,4

Ysplth = fO 4 terms depending on lower orders of u (source terms)

e Evolution equation of u(2):
Oy u® + 0, (au®—T 9, u@) + cu® = 9,(10,f O 70, (120, fO))

e Remarks:
— Even with homogeneous IC and BC, u(?) 2 0 in general due to source term.
— Source term depends not on u(!) even if # 0. (Seperates even/odd orders!)
— 374 4t derivatives of u(?) occuring in source term complicate estimation of
u(?) <« strong regularity requirements.
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Representation of the Populations

Observation: The asymptotic expansions of the 3 populations p1, p2, p3 can be
given only in terms of the asymptotic orders of w.

Assumption: For j ¢ N: w2+t =0 — justification later!

i iy

p(0) = wy®

p( = nws FO

p? = wu® — (nsZ—l)WT(‘?wf(0>

p® = nws f@ + ws(ns? —1)79,(70, @) — nwstdf©®

p(t,z,8) = pO(t,x,5) + epM(t,2,5) + ?pP(t, z,5) + pP(t,2,5) + O(e)
Observation: odd(even) asymptotic order — odd(even) polynomials in s

Consequence: f(© and 8, /(9 can be extracted up to terms of order O(e?).
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Extracting " Hidden” Information

po+pi+po = D>.p = w0 1 €242 + O(eh)

P2 — P1 = Yps = ef® 4 e3 72 _ 3p, fO) + O(e)

P2 + P1 = Yops? = L@ 4 L2y 2pnmly £0) Ol
Definition: f:= 1(ps — p1), = L (Zps?-1%p)

Conclusions:

1. If the assumption holds, then:

f = fO+0() au® — Z9,u + O(e?)
g = ¢9+0(?) = —7219, (au® — Z9,u?) + O(e?)

2. Solution of the LB equation = approximate solution of the limit-equation
+ approximation of its first and second derivatives.
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The Equivalent Moment System (EMS)

Remarks:
— Definition of f, g motivated by the assumption, but independent of it
— Kinetic variables: p; p2 ps <= Physical variables (Moments): u f g

Idea: Express LB equation in terms of u, f,g — equivalent moment system:

Transformation:
ohp  + S0, p = —5[Qp — p] + kw
OM 'm + 1S9,M 'm = #:QGMe_lm — M 'm] + kw
1
g

om + IM.SM;'0,m = —5[M.QM;'m — m] + kMw

\]

|
7

ohu + O0.f + cu
8tf+%8u+8xg:%<au—f) f= au—Z0u — 7 (0f + 0z9)
Org +n—_zlaxf S— g :—TTaa:f—€7'3t9

p = (p07p17p2) , 1M1= (u7f7 g)T7 W = (W07W17W2)T7 m = Mep
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Further Conclusions from the EMS

Observations:

4.

. Transformation matrix M, is orthogonal w.r.t. the scalar product generated by

Diag(w), i.e.

M, Diag(w) M = Diag((1, -5, 277))

9 n€2 9 n2€4

Disadvantage: In contrast to LB equation: hyperbolic part NOT diagonal

EMS reveals resemblence to relaxation systems.

. Trivial reduction to limit-equation NOT possible — instead:

Infinite hierarchy of successively, formally solvable equations — Convergence ?

Equation for g not needed to obtain formally limit equation

Proposition:
Total decoupling of odd/even asymptotic orders of u, f, g

Proof: verification by induction using: only € dependent coefficient is €

2
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Analysis of Kinetic Boundary Conditions
e BC of Bounce-Back Type 1: left boundary
incoming po = — outgoingp; < 0 = pa+p; = €9+ %u
s u9=0 A D=0 A u®=ngD A B =png) A
homogeneous Dirichlet BC for (%)
e BC of Bounce-Back Type 2: left boundary
incoming ps = outgoingp; < 0 = pa—p1 = ¢f < fO =0V €N,
£0) = 540 —%(%u(o) = 0 Natural BC for u(9, since flux = 0 at boundary

a # 0: Robin BC: , a = 0: Neumann BC for (%)

Observation: Odd/Even-decoupling not affected by BC

Proof of Assumption:

Kinetic BC = homogeneous BC for ulV). = «(1) =0 if initialized with 0.
Periodic BC: argue only with the evolution equations and IC.

Infer by induction: odd orders of u must vanish.
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Grid Transformation of Populations

p=M"T'm = p=

€

— 0 = 4 y©

{ p = p(o) _|_ ep(l)

2. Recall: u(® = u+ O(e?)

wu + isef + 1(3s% —2)e%g

p(l) = %Sf(o) p(2) = W u(2) _|_ %(352 — 2) g(o)

1. Consider 2 LB systems: parameter €1 =€, eo =1
but both approximating the same IBVP for the limit equation:

fO = f+0() ¢ = g+0(?)

u® = a4+0mn? fO = Ff+0mn?) ¢O = G+ 0mn?
AL
p = p® + pp® + 0m*) = wul® + InsfO + O(n?)

= w (u—i— 0(62)> -+ %ns(f + 0(62)) + O(n?)

—

p=wu + insf + O(e2) + On?
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Asymptotic Consistency versus Finite Difference Consistency

e Two notions of consistency:
— asymptotic consistency of order m:
Aaue=0 N Av =0 = |u. —v| = O(e™)
— truncation error of order m:

FDOp,(v) = O(h™) if DiffOp(v) =0

e Question: Does LB provide the exact solution, if it is a 2"¢ order polynomial?

Background:
FD methods based on Taylor series mostly do
(One of the main debugging tools!)

Example:
Poisson Equation in 1D discretized with 3-point stencil:
D Dy v = =7 (v(z+h) — 2v(x) + v(z—h))

= 0%v+ L 0%vh? 4+ O(h?)
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A Simple Analytic Example: Poiseuille Flow

e Problem: —vdav(r) =k _ k(B2 _ 2
{ o(~h)=0=uv(h) v =5y (8 |

¢ Intention:

Formulate and solve the associated LB problem
Compare LB solution u = pg + p1 + p2 with exact solution v

: . —1 —1
e Stationary LB Equation: 0 = po — B—u — =Tk
eETOp1 = P1 — %u — %62’7']{
— €T Oyp2 = P2 — %u — %62’7']{

Kinetic BC: py(—h) = —pi(—h) A pi(h) = —pa(h)

Try ansatz with quadratic polynomials reducing number of free parameter by
symmetry arguments:

— U, po: symmetric w.r.t. 0
— p1, p2: equal amplitude, shifted in opposite directions by the same distance
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Solution of the Example Problem

e Ansatz with non-negative unknowns: abcw z g r

ulz) = a(w—2x)(w+zx) = aw? — ax?
po(z) = bz—x)(z+2x) = bz? — bx?
pi(z) = clg—x)(r+xz) = —cx’*+clq—r)r+cqr
p2(r) = c(r—=a)(¢g+z) = —cx®+c(r—q)z+cqr

e Calculation:
— kinetic BC: rq = h?
— LBE for pp: z?term: b=""1q constant-term: a(z? — w?) = 7k (*)
— LBE for py: x?-term: ¢ = % a x-term: 2eT =1r —gq
constant-term: a(w? — h?) = 2ae’1? — €27k (*x)
— Def. of u: constant-term: (n — 1)z + h? = nw? (* * *)

(%) + (x%¥) = 2z =+h2+ 23T

use in (k% %) = w = \/h2 + 221272 utilizing (x): = a=12k
k —1 k(n —1
Result: u:—<h2—x2+2n 6272):v+2 (n )6272
2V n 2un
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Convergence Tests: D1P2 Model v = 0.01

Configuration: T' 22 [0, 1] with periodic BC — Damped Travelling Cosinus
a € 40,0.2,1,(2)} #(Grid Nodes) € {20, 40, 60,80} — uniform grid

dampedCosinus: v=0.01, a=0.2
T T T

dampedCosinus: v=0.01, a=0
T T

Error
Error

Time

. dampedCosinus: v=0.01, t=1.25, #nodes: 20, 40, 60, 80
10 T

e Logarithmic convergence diagram for
final iteration

107E

e Predicted convergence order of 2
clearly visible

10°E

10°F

Pretd

e Increase of error for faster advection

1074 -2 -1 0
10 10 10
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Convergence Tests: D2P1 Model v = 0.0005

Configuration: T' 22 [0, 1] with periodic BC — Damped Travelling Cosinus
a € 40,0.2,1,(2)} #(Grid Nodes) € {20, 40, 60,80} — uniform grid

dampedCosinus: v=0.0005, a=0 dampedCosinus: v=0.0005, a=0.2 dampedCosinus: v=0.0005, a=1
T T T T T 0.06 T T T T T T 0.15 T T T

WMWHWWHWHHHHH{H} — NMHM witn w'

Time Time Time

dampedCosinus: v=0.0005, t=1.25, #nodes: 20, 40, 60, 80
T

e Small diffusivity v, low grid resolution
= highly oscillating initial layer

107

e Slight deviation from predicted .
convergence order in logarithmic
diagram (red/blue line) probably due

to strong initial layer on coarsest grid T

10"
Grid-Spacing ds
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Open Problems

e Asymptotics:
Till now: Study of the regular asymptotic behavior of LB system

= How can the singular behavior be resolved, e.g. initial layers ?

e Strict Convergence Results:
Till now: Attempt to prove convergence of the continous D1P2.model with

Fourier series = More general techniques, energy estimates 7

e Analysis of boundary and coupling conditions for D2P9-model leads to
contradictive equations in the 2% order

e (lassic discrete LB schemes = Discretizations consistent to the continous
LB equations (Finite Volume Methods)
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Appendix

e DAR-equilibrium-matrix defined by the relation q = Q.p :

n—1 n—1 2
— — =€ TcC 0 0 1 1 1
- 1 1 1 2
= 0 on §€ a— o €ECTC 0 1 1 1
1 o1 1 .2 1 1 1
0 0 5.+ 5€6a —5-€°TcC
e Moment transformation matrix defined by the relation m = M.p :
—1 2
1 1 1 0 0 —e
_ 1 1 -1 _ 1 1 1.2
Me B O1 n—i nil Me B 2n 2 ‘ 2 ‘
T ne? ne2 ne2 % %E %62
e Transformed velocity-matrix and transformed equilibrium-matrix:
0 e O 1—€*1¢ 0 0
_ 1 _
M.SM; g — 0 ¢ M.Q M e a 0 O
0 ==L 0 0 0 0
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