
Analysis of lattice Boltzmann methods

Regular and multiscale expansions

Short course material – ICMMES 2006, Hampton(Virginia)

Michael Junk and Martin Rheinländer

2nd October 2006

Contents

1 Introduction 1

2 The lattice Boltzmann algorithm 2

2.1 A few words concerning the notation 2

2.2 Presentation of the algorithm . 3

3 Regular expansion 4

3.1 Analysis of the update rule . 4

3.2 Analysis of initial conditions . 11

3.3 Consistency . 13

3.4 Explicit computation of the mass moments 15

4 Multiscale Expansion 17

4.1 A numerical experiment to detect different time scales 17

4.2 Additional quadratic time scale . 21

4.3 Additional cubic time scale . 25

5 Appendix 29

1 Introduction

In this course we focus on the analysis of lattice Boltzmann schemes by asymptotic
methods. Since asymptotic analysis lives mainly by concrete case studies rather
than by collections of abstract recipes, we propose a simple lattice Boltzmann al-
gorithm, which is used to develop and to illustrate the ideas simultaneously. In
particular, the goal of our presentation is to answer (at least partly) the following
questions:

• How to perform a consistency analysis of numerical schemes by regular ex-
pansions?

1

2 2 THE LATTICE BOLTZMANN ALGORITHM

• Where are the shortcomings of regular expansions. For instance: Regular
expansions may fail to reflect correctly the long term behavior of the scheme.

• What are multiscale expansions and how do they come naturally into play, to
describe the numerical algorithms more accurately?

We stress that all methods presented here are not restricted to lattice Boltzmann
methods but can readily be applied to any other finite difference scheme.

2 The lattice Boltzmann algorithm

2.1 A few words concerning the notation

Lattice Boltzmann methods are based on discrete velocity particle models. Con-
cretely, we consider fictitious particles that can move with unit speed in one space
dimension either to the left or to the right. Hence the discrete velocities are given by
S := {s1, s2} = {−1, 1}. The particle distribution is described by a vector-valued
function referred to as the population function. The first component represents
the density of the particles traveling to the left, while the second component is
associated with the other species:

F(t, x) =
[
Fk(t, x)

]

k∈{1,2}
=
(

F1(t,x)

F2(t,x)

)

.

Observe that the components, which we denote as populations, depend on time
and space. In order to keep the conception1 clear we designate R

2 by R
S , if the

indices refer to the discrete velocities. Elements of R
S are highlighted by sans-

serif characters. Let us introduce the following abbreviations, that will simplify the
computations of later sections:

1 :=
(1
1

)
∈ R

S s :=
(
s1

s2

)
=
(−1

1

)
∈ R

S

The scalar product in R
S is indicated by brackets. In particular we have:

〈f, g〉 := f1g1 + f2g2 ⇒ 〈1, 1〉 = 〈s, s〉 = 2 and 〈1, s〉 = 0. (1)

For f ∈ R
S we call the scalar products 〈f, 1〉 and 〈f, s〉 mass moment (0th moment)

and flux moment (1st moment) respectively. Furthermore, we will extensively make
use of componentwise multiplication for f, g ∈ R

S :

gf = fg =
(
f1
f2

)(
g1

g2

)
:=
(
f1g1

f2g2

)
⇒ 1f = f, s2 =

(
(−1)2

12

)

= 1, s3 = s .

By slight abuse2 of notation, we understand the usually invalid operation a+ f with
a ∈ R and f ∈ R

S in the sense of a + f := a1 + f.

1In allusion to the phase-space density of the Boltzmann equation, it would be natural to describe
the particle distribution with a function (t, x, s) 7→ F̃(t, x, s) where the variable s can only take the
two values s1 and s2. However, we abstain from this point of view, using the more familiar vector
notation Fk(t, x) = F̃(t, x, sk) instead.

2A reader familiar with MATLAB may notice the analogy with respect to the componentwise
multiplication operator (.*) for matrices as well as the addition of scalars and matrices.

2.2 Presentation of the algorithm 3

2.2 Presentation of the algorithm

The algorithm we are going to investigate has the standard lattice Boltzmann form

Fk(t + h, x + skh) = Fk(t, x) +
[
JF(t, x)

]

k
, k = 1, 2 (2)

where the discretization parameter h = 1/N , N ∈ N determines the space-time
grid. More precisely, t can take the values tn = nh with n ∈ N0 and x ranges in
xi = ih with i ∈ Z. The collision operator J on the right hand side of (2) models
the particle interaction. Here, we choose the simple BGK form

JF = ω(E(U) − F)

with relaxation parameter ω. The equilibrium distribution E(U) is assumed to
depend only on the mass moment U of F

E(U) := 1
2(1 + as)U, U = 〈F, 1〉.

The role of the parameter a ∈ R will be explained later. In view of (1) we observe
that

〈E(U), 1〉 = 1
2U〈1, 1〉 + 1

2aU〈s, 1〉 = U

so that
〈JF, 1〉 = ω

〈
E
(
〈F, 1〉

)
, 1
〉
− ω〈F, 1〉 = ω〈F, 1〉 − ω〈F, 1〉 = 0

which expresses the mass conservation during the collision process. We remark that
the collision operator is linear in our example because the equilibrium distribution
depends linearly on F. In fact, we can write for a general f ∈ R

S

E1(〈f, 1〉) = 1
2(1 + as1)〈f, 1〉 = 1

2 (1 − a)f1 + 1
2(1 − a)f2

E2(〈f, 1〉) = 1
2(1 + as2)〈f, 1〉 = 1

2 (1 + a)f1 + 1
2(1 + a)f2

so that E(〈f, 1〉) = Ef with the matrix

E := 1
2

(
1 − a 1 − a
1 + a 1 + a

)

(3)

which satisfies the projector property E = E2. Using this notation, the collision
operator is given by the matrix J = ω(E − I) and the algorithm (2) appears in the
form

Fk(t + h, x + skh) = (1 − ω)Fk(t, x) + ω
[
EF(t, x)

]

k
. (4)

Apart from this update rule we require suitable initial and boundary conditions to
fully specify the particle dynamics.
A typical initialization rule is based on the equilibrium distribution. Given some
function x 7→ v0(x), one may set

F(0, x) = E(v0(x)). (5)

Improvements of this basic rule will be derived in the sequel. In order to keep our
first analysis as simple as possible, we assume that v0 is a 1-periodic function, i.e.
v0(x + 1) = v0(x). Since the grid points xi = ih = i/N , i ∈ Z are compatible with

4 3 REGULAR EXPANSION

this periodicity in the sense that xi + 1 = xi+N , we can conclude that the lattice
Boltzmann solution is also 1-periodic. In particular, it suffices to compute F only
on the finite subset {x0, . . . , xN−1}. The required information from the neighbors
of the trailing points follows from periodicity

F(t, x−1) = F(t, xN−1), F(t, xN) = F(t, x0) (6)

which can be regarded as a boundary condition.

3 Regular expansion

3.1 Analysis of the update rule

Implementing the lattice Boltzmann algorithm introduced above with initial value
v0(x) = cos(2πx), for example, we observe the following dynamics of U = 〈F, 1〉:
provided |a| is small enough (otherwise the algorithm is unstable), the initial cosine-
shape of the graph moves with a speed related to the parameter a. Repeating the
simulation with smaller grid size h, we observe similar profiles. It turns out that the
amplitude of the cosine reduces during the movement and this reduction is more
pronounced for larger values of h.

In order to understand the behavior of the lattice Boltzmann solution F(t, x) more
thoroughly, we try to approximate it in the form of a regular h-expansion

F(t, x) ≈ f [α](t, x) := f(0)(t, x) + hf(1)(t, x) + . . . + hαf(α)(t, x) (7)

with t = tn = nh and x = xj = jh, n ∈ N, j ∈ Z. Note that f [α] is a polynomial3

of order α ∈ N with respect to the grid parameter h. We refer to f [α] as prediction

function. The asymptotic order functions f (β) with 0 ≤ β ≤ α are supposed to be
h-independent. Hence they are defined on the whole unit interval [0, 1]. In order
to take the boundary conditions (6) of the algorithm into account, they should be
extendible to smooth, 1-periodic functions on R.

If the prediction function f [α] nicely approximates4 the population function F for
small h, then f [α] also satisfies the LB equation (4) up to a small residual. This
observation leads to the rule to determine the coefficients f (β): they are chosen in
such a way that the residual has highest possible order in h and thus vanishes with
optimal speed as h tends to zero. More specifically, we require for all h > 0

f
[α]
k (t + h, x + skh) = (1 − ω)f

[α]
k (t, x) + ω

[
Ef [α](t, x)

]

k
+ O(hα+1). (8)

Under the assumption that the asymptotic order functions are sufficiently smooth

we substitute f
[α]
k (t + h, x + skh) by its Taylor expansion around (t, x) up to the

3This particular h-dependence is motivated by the theorem of Weierstraß which states that the
polynomials are dense in the space of continuous functions over a compact interval like [0, 1]. Hence
any continuous function is arbitrarily well approximated by polynomials. This confirms, that the
set of polynomials might be ample enough, to approximate the grid dependency of the population
function F provided it behaves continuously in h.

4Strictly speaking the approximation refers to the restriction of f
[α] onto the corresponding grid.

3.1 Analysis of the update rule 5

order α:

f
[α]
k (t + h, x + skh) =

α∑

β=0

1
β!h

β (∂t + sk∂x)β f
[α]
k (t, x) + O(hα+1). (9)

A convenient effect of the Taylor expansion is, that it disentangles the index-
depending spatial argument at the left hand side. Therefore we may now write
vectors instead of components (i.e. f in place of fk), such that equation (8) in
combination with the Taylor expansion reads5

α∑

β=0

1
β!h

β (∂t + s∂x
︸ ︷︷ ︸

=:D

)β f [α] = (1 − ω)f [α] + ωEf [α] + O(hα+1).

If we replace f [α] by the truncated series in (7) and incorporate those terms into
O(hα+1) that are proportional to some power of h with an exponent greater than
α, we obtain

α∑

β=0

β
∑

γ=0

1
γ!h

β Dγ f(β−γ) = (1 − ω)
α∑

β=0

hβf(β) + ω
α∑

β=0

hβEf(β) + O(hα+1).

This equation, that shall hold true for arbitrary h, enforces the equality of the
coefficients referring on both sides to the same powers of h. In particular the
comparison of coefficients yields for α ≥ 4 and 0 ≤ β ≤ 4:

h0 : f(0) = (1 − ω)f(0) + ωEf(0)

h1 : f(1) + Df(0) = (1 − ω)f(1) + ωEf(1)

h2 : f(2) + Df(1) + 1
2D2f(0) = (1 − ω)f(2) + ωEf(2)

h3 : f(3) + Df(2) + 1
2D2f(1) + 1

6D3f(0) = (1 − ω)f(3) + ωEf(3)

h4 : f(4) + Df(3) + 1
2D2f(2) + 1

6D3f(1) + 1
24D4f(0) = (1 − ω)f(4) + ωEf(4)

(10)

Next, we gather in each equation the terms of highest index at the left hand side,
while the other terms are collected at the right:

(I − E)f(0) = 0

(I − E)f(1) = − 1
ω
Df(0)

(I − E)f(2) = − 1
ω
Df(1) − 1

2ω
D2f(0)

(I − E)f(3) = − 1
ω
Df(2) − 1

2ω
D2f(1) − 1

6ω
D3f(0)

(I − E)f(4) = − 1
ω
Df(3) − 1

2ω
D2f(2) − 1

6ω
D3f(1) − 1

24ω
D4f(0)

(11)

Obviously, we obtain for each asymptotic order function a linear equation with the
common system matrix I −E. Furthermore the asymptotic order functions depend
hierarchically on their “comrades” of lower order, which appear as inhomogeneities.

5We consider D as a special differentiation operator, therefore we should define it by D :=
I∂t +S∂x, where I is the 2×2 identity matrix and S := (−1 0

0 1) Note that the matrix multiplication
with I and D is equivalent to the vector multiplication with 1 and s respectively.

6 3 REGULAR EXPANSION

This implies that the equations must be solved successively starting with the ho-
mogeneous equation for f(0). However, the singularity of I − E seems to create a
problem. In fact, we have

I − E =

(
1 0
0 1

)

− 1
2

(
1 − a 1 − a
1 + a 1 + a

)

= 1
2

(
1 + a −1 + a
−1 − a 1 − a

)

(12)

which shows that the rank of I −E is only 1 (the rows differ only by sign). At first
sight this seems to be disturbing, because the lack of an inverse matrix (I − E)−1

entails, that the solution for arbitrary right hand sides may not exist or is not
unique in the affirmative case. A second glance reveals, however, that the regular
expansion ansatz would fail, if I −E were invertible. In this case f (0) could only be
0 yielding by induction 0 for all the other asymptotic order functions. So f [α] would
have no other choice than to vanish thus trapping the ansatz into a cul-de-sac.
Let us now look under what circumstances the 2 × 2 system (I − E)x = y has a
solution. As the image space of I − E is spanned6 by s

image(I − E) = span

{(
−1

1

)}

= span{s},

the inhomogeneous equations admit only solutions for right hand sides being multi-
ples of s. Since {1, s} forms an orthogonal basis in R

S every vector and in particular
y admits the representation

y = 1
2 〈y, 1〉1 + 1

2〈y, s〉s.

where the factor 1
2 = 〈1, 1〉−1 = 〈s, s〉−1 takes into account that the basis vectors

are not normalized. The condition of y being a multiple of s enforces 〈y, 1〉 = 0.
Therefore the mass moment of the inhomogeneity y must vanish. Consequently,
equations (11) are supplemented by the following solvability conditions.

〈Df(0), 1〉 = 0

〈Df(1), 1〉 = −1
2〈D

2f(0), 1〉

〈Df(2), 1〉 = −1
2〈D

2f(1), 1〉 − 1
6〈D

3f(0), 1〉

〈Df(3), 1〉 = −1
2〈D

2f(2), 1〉 − 1
6〈D

3f(1), 1〉 − 1
24 〈D

4f(0), 1〉

(13)

In the forthcoming paragraphs we extract from these equations:

• explicit formulas representing the asymptotic order functions in terms of their
mass moments,

• evolution equations determining the mass moments.

Before we begin with this program we need to know the nullspace of I − E, which
is given by the range of E, i.e.:

kernel(I − E) = span

{

1
2

(
1 − a
1 + a

)}

= span
{

1
2(1 + as)

}
. (14)

6The column vectors of I − E in (12) are multiples of s, more precisely the left column vector
is (1 + a)s, the right one (−1 + a)s.

3.1 Analysis of the update rule 7

Note, that the factor 1
2 serves only to normalize the mass moment.

It shall be emphasized that we have not yet said anything, so far, about the existence
of the prediction function. All we do is to derive necessary conditions, that must
be fulfilled by a sufficiently smooth prediction function and its asymptotic order
functions in order to generate a residual of the desired magnitude. However, as
soon as we find functions complying with the obtained conditions, we can infer the
existence of the prediction function.

Discussion of the 0th order equation: representation of f (0)

Equation (110) implies that f(0)(t, x) must belong to the kernel of I − E inde-
pendently of its arguments t, x. According to equation (14) f (0)(t, x) should be a
multiple of 1

2(1 + as). The factor of proportionality, abbreviated by u(0), may vary

with t, x like f(0) itself and must be considered as a scalar function. So we get:

f(0) = 1
2(1 + as)u(0) (15)

At present, u(0) appears to be completely arbitrary. In the next paragraph we
will see, that the solvability condition for equation (111) imposes the necessary
constraints on u(0) to fix it. However, taking the scalar product7 with 1 we recognize
already now that u(0) plays the role of the mass moment pertaining to f (0).

Discussion of the 1st solvability condition: evolution of u(0)

Writing down equation (130) being the solvability condition for (111), yields in
detail:

0 = 〈Df(0), 1〉 = 1
2

〈(
∂t + s∂x

)(
1 + as

)
, 1
〉
u(0)

= 1
2

〈
∂t + s(a∂t + ∂x) + a∂x, 1

〉
u(0)

= ∂tu
(0) + a∂xu(0) ,

This shows, that u(0) must be a solution of the advection equation:

∂tu
(0) + a∂xu(0) = 0 (16)

Discussion of the 1st order equation: representation of f (1)

From linear algebra it is well known, that the general solution of an inhomogeneous,
linear equation like (111) is composed of a specific solution plus an arbitrary solu-
tion of the homogeneous equation. In complete analogy to (110), the solution of the
homogeneous equation (I − E)f (1) = 0 is given by 1

2(1 + as)u(1), where – similarly

to u(0) above – u(1) is an unknown function to be determined later.

7Observe: 〈 1
2
(1 + as), 1〉 = 1

8 3 REGULAR EXPANSION

How does a specific solution of the inhomogeneous equation (I −E)x = y look like?
From E2 = E we conclude that I − E is a projector too, because

(I − E)2 = I2 − 2E + E2 = I − 2E + E = I − E .

Hence, if y ∈ image(I −E) which entails y = (I −E)z for some z ∈ R
S , we conclude

that

(I − E)y = (I − E)2z = (I − E)z = y,

which proves that y itself solves the equation (I−E)x = y and is therefore a specific
solution.

Applying this result we get the subsequent representation of f (1)

f(1) = 1
2(1 + as)u(1) − 1

ω
Df(0),

which tacitly assumes the solvability condition 〈Df (0), 1〉 = 0 or equivalently equa-
tion (16) to hold true. From this and 〈s, 1〉 = 0 we deduce 〈f (1), 1〉 = u(1). Thus
u(1) emerges as mass moment of f(1).

In order to obtain a fully explicit expression we need to compute Df (0).

Df(0) = 1
2(∂t + s∂x)(1 + as)u(0) = 1

2

=0
︷ ︸︸ ︷

(∂t + a∂x)u(0) + 1
2s(a∂t + ∂x)u(0)

= 1
2(1 − a2)s∂xu(0)

To get rid of the overbraced addend and to transmute the temporal derivative into a
spatial one, we have applied equation (16) twice. With this preparation, we finally
arrive at:

f(1) = 1
2(1 + as)u(1) − 1

2ω
(1 − a2)s∂xu(0) (17)

It is also easily checked by this formula, that u(1) corresponds to the mass moment
of f(1).

Extracting further orders: the general procedure

Before we enter the derivation of the evolution equations for u(1) and u(2), which
might disguise the underlying thread, let us sketch how the computations proceed.
We have seen by solving (110) and (111), that we are required to introduce a scalar
function u(β) for each asymptotic order function. As a consequence of the solvabil-
ity condition it turns out that u(β) has the meaning of the mass moment 〈f (β), 1〉.
Furthermore, u(β) is basically determined as a solution of an evolution equation
that comes out from the solvability condition pertaining to the next order f (β+1).

Using this knowledge we try to organize the computation of further asymptotic
order functions more efficiently. So we introduce the u(β)’s directly by setting

3.1 Analysis of the update rule 9

u(β) := 〈f(β), 1〉. Exchanging Ef(β) with E
(
u(β)

)
=: E(β) we transform (11) into

f(0) = E(0)

f(1) = E(1) − 1
ω
Df(0)

f(2) = E(2) − 1
ω
Df(1) − 1

2ω
D2f(0)

f(3) = E(3) − 1
ω
Df(2) − 1

2ω
D2f(1) − 1

6ω
D3f(0)

f(4) = E(4) − 1
ω
Df(3) − 1

2ω
D2f(2) − 1

6ω
D3f(1) − 1

24ω
D4f(0)

. (18)

In general we obtain

f(β) = E(β) − 1
ω1!Df(β−1) − . . . − 1

ωβ!D
βf(0). (19)

This provides a recursive representation of the asymptotic order functions. After
substituting β by β+1 and taking the scalar product with 1 we recover the solvability
condition for f(β+1)

〈Df(β), 1〉 = −1
2〈D

2f(β−1), 1〉 − . . . − 1
(β+1)!〈D

β+1f(0), 1〉, (20)

where we have additionally used the identity 〈E(γ), 1〉 = u(γ) = 〈f(γ), 1〉.
This equation is the point of departure for deriving the evolution equation of u(β).
The first step is to insert the recursive representation of f (β) into (20). Shoveling
all scalar products with exception of the equilibrium term on the right hand side
we arrive at

〈DE(β), 1〉 = cβ−1〈D
2f(β−1), 1〉 + . . . + c0〈D

β+1f(0), 1〉,

with cβ−1, ..., c0 denoting some coefficients. Independently of β, the left hand side
becomes the differential operator ∂t + a∂x applied to u(β). So u(β) satisfies an
advection equation that is driven by a source term depending on the mass moments
u(0), ..., u(β−1) of the lower-order asymptotic order functions. To make the source
more explicit, we employ recursively the representation formulas (counterparts of
(19) for f(β−1), ..., f(1)) and obtain eventually

∂tu
β + a∂xu(β) = c̃β−1〈D

2E(β−1), 1〉 + . . . + c̃0〈D
β+1E(0), 1〉

with some new constants c̃β−1, ..., c̃0. It only remains to expand the powers of D
and to evaluate the scalar products. Then the source terms contain both spatial and
temporal derivatives of the u(β)’s. In order to eliminate the time derivatives, one
successively resorts to the evolution equations for u(0), . . . , u(β−1). Actually, this
step8 is the most tedious one of the whole computation. Concluding, we see that
the computation can be performed quasi mechanically up to an arbitrary maximal
order α.
Note, that we do not meet an equation for the mass moment of the highest order
u(α), because this would require to introduce a further asymptotic order function
f(α+1). Without reducing the order of the residual we are free to choose u(α). In
accordance with the initial conditions (see next subsection) it can be set to 0.

8We remark that this step is not really necessary; furthermore it might be difficult to perform
it in other situations, where the target equation is more complicated than the advection equation.
The main reason for the replacement of temporal derivatives is to obtain finally expressions for the
population functions that depend only on spatial derivatives. If we want to use these expressions to
improve the initialization of the algorithm, it will be relatively easy to compute spatial derivatives
of the initial data in contrast to time derivatives.

10 3 REGULAR EXPANSION

Evolution equation for u(1): Following the instruction from above we insert first (181)
and then (180) into (131):

〈DE
(1), 1〉 = (1

ω
− 1

2
)〈D2

f
(0), 1〉

= (1
ω
− 1

2
)〈D2

E
(0), 1〉 .

Next, we evaluate 〈DE
(1), 1〉 = ∂tu

(1) + a∂xu(1) and

〈D2
E

(0), 1〉 = 1
2

D`
∂2

t + 2s∂t∂x + ∂2
x

´
(1 + as), 1

E

u(0)

=
`
∂2

t + ∂2
x + 2a∂t∂x

´
u(0) = (1 − a2)∂2

xu(0),

where we have employed repeatedly (16) ∂tu
(0) = −a∂xu(0) to eliminate the time derivatives.

Combining the results produces the evolution equation for u(1).

∂tu
(1) + a∂xu(1) = (1

ω
− 1

2
)(1 − a2)∂2

xu(0) (21)

Evolution equation for u(2): Once again we repeat the procedure. Plugging first (182)
into (132) leads to

〈DE
(2), 1〉 =

`
1
ω
− 1

2

´
〈D2

f
(1), 1〉 +

`
1
2ω

− 1
6

´
〈D3

f
(0), 1〉 .

Insertion of (181) for f
(1) and (182) for f

(2) gives

〈DE
(2), 1〉 =

`
1
ω
− 1

2

´
〈D2

E
(1), 1〉 −

`
1

ω2 − 1
ω

+ 1
6

´
〈D3

E
(0), 1〉 . (22)

Since the left hand side ends up in the advection operator applied to u(2), it remains to care about
the two addends of the right hand side. In order to eliminate finally all time derivatives, we express
first ∂2

t u(1) by space derivatives of u(1) and u(0). For this we employ the evolution equations (21)
and (16):

∂2
t u(1) = −a∂x∂tu

(1) + (1
ω
− 1

2
)(1 − a2)∂2

x∂tu
(0)

= −a∂x

“

− a∂xu(1) + (1
ω
− 1

2
)(1 − a2)∂2

xu(0)
”

− (1
ω
− 1

2
)a(1 − a2)∂3

xu(0)

= a2∂2
xu(1) − 2a(1

ω
− 1

2
)(1 − a2)∂3

xu(0).

This preparation together with further substitutions using (21) and (16) then yields:

〈D2
E

(1), 1〉 = 1
2

D

(∂2
t + 2s∂t∂x + ∂2

x)(1 + as), 1
E

u(1) =
`
∂2

t + 2a∂t∂x + ∂2
x

´
u(1)

= a2∂2
xu(1) − 2a(1

ω
− 1

2
)(1 − a2)∂3

xu(0)

+ ∂2
xu(1) + 2a∂x

“

− a∂xu(1) + (1
ω
− 1

2
)∂2

xu(0)
”

= (1 − a2)∂2
xu(1)

For the second addend we get; utilizing (16) again,

〈D3
E

(0), 1〉 = 1
2

D`
∂3

t + 3s∂t∂
2
x + 3∂t∂

2
x + s∂3

x

´`
1 + as

´
, 1

E

u(0)

=
“

∂3
t + 3a∂2

t ∂x + 3∂t∂
2
x + a∂3

x

”

u(0) =
“

− a3 + 3a3 − 3a + a
”

∂3
xu(0)

= −2a(1 − a2)∂3
xu(0).

Combining these results with (22) eventually produces the evolution equation for u(2).

∂tu
(2) + a∂xu(2)∂tu
(2) + a∂xu(2)∂tu
(2) + a∂xu(2) = (1

ω
− 1

2
)(1 − a2)∂2

xu(1)∂2
xu(1)∂2
xu(1) + 2a(1

ω2 − 1
ω

+ 1
6
)(1 − a2)∂3

xu(0)∂3
xu(0)∂3
xu(0) (23)

3.2 Analysis of initial conditions 11

Explicit representation of f (2): In order to provide explicit expressions9 for the asymp-
totic order functions we must go through the recursion as given by (18) and (19).
For f

(2) we start with the preliminary calculations to get Df
(1) and D2

f
(2):

Df
(1) = 1

2
(1 + as)(∂t + s∂x)u(1) − 1

2ω
(1 − a2)s(∂t + s∂x)∂xu(0)

Eliminating the temporal derivatives by reverting to (16) and (21) we continue:

Df
(1) = 1

2
(1 + as)

“

− a∂xu(1) + (1
ω
− 1

2
)(1 − a2)∂2

xu(0)
”

+ 1
2
(1 + as)s∂xu(1)

− 1
2ω

(1 − a2)s(−a∂x + s∂x)∂xu(0)

= 1
2
(1 − a2)s∂xu(1) + 1

2
(1 − a2)

“

(1
ω
− 1

2
)(1 + as) − 1

ω
(1 − as)

”

∂2
xu(0)

= 1
2
(1 − a2)s∂xu(1) + 1

2
(1 − a2)

“
2
ω

as − 1
2
as − 1

2

”

∂2
xu(0)

Likewise we obtain:

D2
f
(0) = 1

2
(1 + as)(∂2

t + 2s∂t∂x + ∂2
x)u(0) = 1

2
(1 + as)(a2∂2

x − 2as∂2
x + ∂2

x)u(0)

= 1
2
(1 − a2 + a3

s − as)∂2
xu(0) = 1

2
(1 − a2)(1 − as)∂2

xu(0)

Plugging these expressions into (182) yields

f
(2) = E

(2) − 1
ω

Df
(1) − 1

2ω
D2

f
(0)

= 1
2
(1 + as)u(2) − 1

2ω
(1 − a2)s∂xu(1)

− 1
2ω

(1 − a2)
“

2
ω

as − 1
2
as − 1

2

”

∂2
xu(0) − 1

4ω
(1 − a2)(1 − as)∂2

xu(0)

and finally:

f
(2) = 1

2
(1 + as)u(2) − 1

2ω
(1 − a2)s∂xu(1) − 1

2ω
(1

ω
− 1

2
)(1 − a2)as∂2

xu(0) (24)

3.2 Analysis of initial conditions

With the considerations above, we have come quite close to a thorough understand-
ing of the lattice Boltzmann solution. Starting out with an asymptotic expansion
F(t, x) ≈ f(0)(t, x)+hf(1)(t, x)+h2f(2)(t, x)+ . . ., we derived the precise form of the
leading order coefficients

f(0) = 1
2(1 + as)u(0)

f(1) = 1
2(1 + as)u(1) − 1

2ω
(1 − a2)s∂xu(0)

f(2) = 1
2(1 + as)u(2) − 1

2ω
(1 − a2)s∂xu(1) − 1

2ω
(1

ω
− 1

2)(1 − a2)as∂2
xu(0)

(25)

by exploiting the lattice Boltzmann update rule (4). However, the full lattice Boltz-
mann algorithm consists of (4) and the initialization condition (5)

F(0, x) = E(v0(x)). (26)

In order to ensure that our prediction function satisfies all the constraints imposed
on the numerical solution as accurately as possible, we use (26) in exactly the same

9containing only (spatial) derivatives of the mass moments of equal and lower order

12 3 REGULAR EXPANSION

way as the update rule: we replace F in (26) by f [α] and compare h-coefficients. Due
to the simplicity of the condition, we quickly find

h0 : f(0)(0, x) = 1
2 (1 + as)v0(x)

h1 : f(1)(0, x) = 0

h2 : f(2)(0, x) = 0

(27)

Comparing (250) and (270), we see that the initialization constraint forces the initial
condition u(0)(0, x) = v0(x) for the leading order mass moment. In view of the fact
that u(0) also satisfies (16), we conclude that u(0) and thus also f(0) is now completely

determined.

In the next order, we similarly find u(1)(0, x) = 0 but also ∂xu(0)(0, x) = 0.
The latter condition is clearly violated if the function v0 is not constant because
u(0)(0, x) = v0(x) as a consequence of the previous consideration. In other words, for
the lattice Boltzmann algorithm with initialization (26), our prediction function can
only describe the numerical solution if v0 is restricted to the boring case of constant
functions. The reason for this behavior can be understood as follows: even if we set
u(1)(0, x) = 0, the evolution equation requires f (1)(t, x) = − 1

2ω
(1 − a2)s∂xu(0)(t, x)

for all (t, x) ∈ [0, T] × R whereas the initialization forces f (1)(0, x) = 0. These two
conditions amount to a discontinuity of f (1) at t = 0 unless v0 is constant. In par-
ticular, a smooth prediction function as used in the expansion of the update rule,
is incapable of describing this situation properly. Since smoothness has been an
important ingredient in the derivation (Taylor’s theorem), we conclude that our
prediction function may properly describe the leading order h-dependence of the
numerical solution but fails to describe the first order contribution.

Practically, we can observe the anticipated non-smoothness in first order as a con-
sequence of initialization (26). An example is provided by figure 3.2.

As a remedy, we propose a modified initialization rule which avoids non-smoothness
in the leading orders. We set10

F(0, x) = E(v0(x)) − h 1
2ω

(1 − a2)s∂xv0(x) − h2 1
2ω

(1
ω
− 1

2)(1 − a2)as∂2
xv0(x). (28)

Analyzing the lattice Boltzmann algorithm with this initialization rule, we find

h0 : f(0)(0, x) = 1
2(1 + as)v0(x)

h1 : f(1)(0, x) = − 1
2ω

(1 − a2)s∂xv0(x)

h2 : f(2)(0, x) = − 1
2ω

(1
ω
− 1

2)(1 − a2)as∂2
xv0(x)

(29)

which is compatible with (25) if u(0)(0, x) = v0(x) and u(1)(0, x) = u(2)(0, x) = 0.

10This idea can be generalized by setting F(0, x) = f
[α](0, x) where all mass moments u(β) with

1 ≤ β ≤ α are assumed to vanish initially and u(0)(0, x) is assumed to be v0(x). In this case,
the initial condition only depends on v0 and its derivatives. By construction, the initialization
is compatible with the prediction f [α] so that non-smoothness may only appear in order α + 1.
From a practical point of view, the initial condition enforces 〈F(0, x), 1〉 = v0(x) so that v0 has the
interpretation as initial value for the mass moment of F.

3.3 Consistency 13

In summary, our prediction function f [2] satisfies the full lattice Boltzmann algo-
rithm quite accurately, provided the asymptotic order functions are based on the
mass moments satisfying the subsequent initial value problems (30), (31) and (32).
For clarity we define the abbreviations:

µ := (1
ω
− 1

2)(1 − a2), λ := 2a(1
ω2 − 1

ω
+ 1

6)(1 − a2).

IVP for u(0):

∂tu
(0) + a∂xu(0) = 0

u(0)(0, x) = v0(x)
(30)

IVP for u(1):

∂tu
(1) + a∂xu(1) = µ∂2

xu(0)

u(1)(0, x) = 0
(31)

IVP for u(2):

∂tu
(2) + a∂xu(2) = µ∂2

xu(1) + λ∂3
xu(0)

u(2)(0, x) = 0
(32)

We remark that u(0), u(1), u(2) are automatically 1-periodic if v0 has this property.
Furthermore these equations determine u(0), u(1) and u(2) unambiguously.

3.3 Consistency

We have seen that the prediction function f [2] approximately satisfies the lattice
Boltzmann algorithm (4) with initialization (28) if the asymptotic order functions
and their mass moments are chosen according to (25) and (30), (31), (32). We can
formally11 conclude that f [2] captures the h-behavior of F up to the expanded order,
i.e. F(t, x)− f [2](t, x) = O(h3). Summing over the components, we find for the mass
moment at every grid point (t, x)

U(t, x) = u(0)(t, x) + hu(1)(t, x) + h2u(2)(t, x) + O(h3). (33)

In particular, U coincides with the solution u(0) of (30) up to an error which is at
least proportional to h. In this sense, our lattice Boltzmann algorithm is consistent

to the advection equation (30). The order of consistency can also be deduced from
(33). If ω 6= 2 and a2 6= 1 and hence µ 6= 0, equation (31) for u(1) involves a
non-zero source term (unless v0 is constant which would imply ∂2

xu(0) = 0). Thus
u(1) will be different from zero and the coincidence of U and u(0) is of first order

U(t, x) − u(0)(t, x) = hu(1)(t, x) + O(h2).

11The conclusion can be rigorously justified provided the lattice Boltzmann evolution operator
can be shown to be stable which essentially requires all powers of the evolution matrix to be
uniformly bounded in a suitable norm.

14 3 REGULAR EXPANSION

0 1 2 3 4 5 6 7 8 9 10

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0 1 2 3 4 5 6

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0.02

Figure 1:

The curves represent the quantity F1(t, x)− f
[2]
1 (t, x) versus the time t in a fixed, single

grid point x over 200 iterations on a mesh with 20 nodes with ω = 1.97. In the upper
graph the lattice Boltzmann algorithm has been initialized using the equilibrium with
v0(x) = cos(2πx). The lower curve refers to an improved, consistent initialization by
means of the regular expansion, i.e. F(0, ·) = f [2](0, ·). The deviation between F and
f [2] starts with 0 and increases quite slowly in time. Furthermore we observe a smoothly
oscillating behavior which is explained by the advection of the cosine (a = 0.66).
In contrast, the upper curve seems to be a superposition of the lower one with a
strongly oscillating (from iteration to iteration) initial deviation due to the inconsistent
initialization violating the smoothness assumptions concerning the asymptotic order
functions and their mass moments. However, the initial layer ebbs down after around
100 iterations.

3.4 Explicit computation of the mass moments 15

We say that the algorithm is first order consistent to (30) in that case. If, however,
ω = 2 or a2 = 1, the source term in (31) vanishes and since u(1)(0, x) = 0, the
solution u(1)(t, x) turns out to be zero everywhere. In this case,

U(t, x) − u(0)(t, x) = h2u(2)(t, x) + O(h3)

where u(2) is non-zero for non-trivial u(0) and a2 6∈ {0, 1} (note that for ω = 2, the
factor λ = 2a(1−a2)(1

ω2 −
1
ω

+ 1
6) equals − 1

6a(1−a2)). Hence, the lattice Boltzmann
method is a second order accurate method for (30) in the case ω = 2.
For a2 = 1, the u(2)-equation has zero source and zero initial value so that u(2) = 0
in that case. Then, the algorithm is at least third order accurate12.
We conclude that the proposed lattice Boltzmann algorithm gives rise to approxi-
mate solutions of the advection problem (30) with first, second, or higher order of
consistency, depending on the chosen parameters.
In exactly the same way, other lattice Boltzmann algorithms [2, 3, 5, 6, 7, 1] or,
more generally, any finite difference scheme [4] can be analyzed.

3.4 Explicit computation of the mass moments

Due to the simplicity of the scenario considered here, we are able to solve the equa-
tions for the mass moments analytically. This step is actually not necessary for the
consistency analysis which can be carried out just based on the homogeneous or
non-homogeneous structure of the equations as demonstrated above. However, the
explicit solution reveals some interesting structure which naturally leads to a mul-
tiscale analysis of the algorithm. The equations (30), (31), and (32) are advection
problems which can be solved with the method of characteristics.

To explain the idea, let us consider a problem of the general form

∂tw + a∂xw = b, w(0, x) = w0(x). (34)

The equation states that the directional derivative of w along the constant vector (1, a) in (t, x)
space is given by the function b. Considering a characteristic line σ 7→ Y (σ) starting in the point
(0, x0) with direction vector (1, a), i.e.

Ẏ (σ) = (1, a), Y (0) = (0, x0) ⇒ Y (σ) = (σ, x0 + σa),

we know that the value z(σ) of the solution to (34) evolves along the line according to the law

ż(σ) = b(Y (σ)), z(0) = w0(x0).

In particular, the solution w at a given point (t, x) is obtained by determining x0 and σ such that
Y (σ) = (t, x) and setting w(t, x) = z(σ). Specifically, we have σ = t and x0 = x − at, so that

w(t, x) = z(t), ż(σ) = b(σ, x − (t − σ)a), z(0) = w0(x − at).

Applying this methodology to (30), we have to deal with the simple source b(0)(t, x) =
0 so that z turns out to be constant along the characteristic line, i.e. z(σ) =
w0(x − at) for all σ. Hence:

u(0)(t, x) = v0(x − at) (35)

12One can show that for a2 = 1, the lattice Boltzmann algorithm even reproduces the exact

solution of (30) at the grid points.

16 3 REGULAR EXPANSION

Using this result, we can compute the right hand side of (31)

b(1)(t, x) = µv′′0 (x − at), µ = (1
ω
− 1

2)(1 − a2).

Along the characteristic line, we have

b(1)(σ, x − (t − σ)a)) = µv′′0(x − (t − σ)a − aσ) = µv′′0(x − at)

which is independent of σ. Hence, the function value z grows with constant rate
v′′0 (x − at) along the characteristic, starting with u(1)(0, x − at) = 0 so that:

u(1)(t, x) = µtv′′0(x − at) (36)

The source in (32) has the form

b(2)(t, x) = µ∂2
xu(1)(t, x) + λ∂3

xu(0)(t, x), λ = 2a(1
ω2 − 1

ω
+ 1

6)(1 − a2).

Similarly to the previous case, the behavior is simple along the characteristics with
the only difference, that the linear growth of u(1) is integrated to a quadratic be-
havior. More precisely,

b(2)(σ, x − (t − σ)a)) = µ2σv′′′′0 (x − at) + λv′′′0 (x − at)

and thus:
u(2)(t, x) = 1

2µ2t2v′′′′0 (x − at) + λtv′′′0 (x − at) (37)

Using this explicit form, we can write

U(t, x) = v0(y) + (ht)µv′′0 (y) + 1
2(ht)2µ2v′′′′0 (y) + (h2t)λv′′′0 (y) + O(h3)

∣
∣
y=x−at

.

An important observation is that the expansion breaks down if t is chosen large.
For example, if t = 1/h, the formerly first and second order terms obviously turn
into zero order contributions and we may expect that higher order terms which we
collected in O(h3) also need to be considered since they may be of the form (ht)3,
(ht)4, etc. In other words, the regular expansion fails to represent the leading order
behavior for large t since it is non-uniform in the time variable (it contains so-
called secular13 terms). Hence, if we are interested in the long time behavior of our
scheme, we have to choose a different asymptotic ansatz. Such an ansatz can be
motivated by restructuring the expansion of U

U(t, x) = v0(y) +
[
µv′′0(y) + hλv′′′0 (y)

]
ht + 1

2µ2v′′′′0 (y) (ht)2 + · · ·
∣
∣
y=x−at

.

In this form U appears as some sort of truncated power series expansion in the
variable (ht) where the coefficients itself are regularly expanded with respect to h
and depend on t. Clearly, this truncation is reasonable if ht is small but fails for

13Derived from the Latin word saeculum = century. The term originates from celestial mechanics,
more exactly from asymptotic expansions describing the motion of planets, and refers to long term
perturbations. In our context we call terms in an asymptotic expansion secular (with respect to
the time variable) if they are not uniformly bounded over R

+ but only over compact intervals.
However there is no strict definition.

17

ht > 1. The way out is to avoid expanding the distinct ht behavior with respect to
h. Instead, the dependence of the numerical solution on the quantity ht should be
resolved directly. This can be achieved with an ansatz of the form

U(t, x) = u(0)(t, ht, x) + hu(1)(t, ht, x) + h2u(2)(t, ht, x) + . . .

which is a so called two-scale expansion. An additional motivation for this approach
can be drawn from direct observations of the numerical solution. This is explained
in the following section.

4 Multiscale Expansion

4.1 A numerical experiment to detect different time scales

Consider the LB algorithm on two different spatial grids G1 ⊂ G2 with h1 being a
multiple of h2. Both algorithms are supposed to be equally initialized by means of
a smooth function v0 representing the initial mass moment. Let U1(n) and U2(n)
denote the mass moments on the coarse and fine grid after n iterations.

For a moment, we want to ignore the analysis done in section 3. Then it is not clear
a priori, how U1 and U2 are related to each other. To be less sketchy we may ask,
for which indices n1, n2 the mass moments U1(n1) and U2(n2) look especially similar.

We attempt to answer the question by an experiment. If the algorithm is initialized
choosing a peak-like profile for v0, one might discover14 that the peaks almost
coincide with each other if the iteration indices satisfy n1h1 = n2h2. More generally,
we can say

U1(n1) ≈ U2(n2) whenever n1h1 = n2h2. (38)

Therefore it is reasonable to introduce a new quantity T1 defined by T1(ni,Gi) :=
nihi called time. Obviously, the evolution of the algorithm reveals a grid indepen-
dent dynamics, if iterations on different grids are identified with respect to their
time.

The strong resemblance (quasi-agreement) of the mass moments for T1(n1,G1) =
T1(n2,G2) is explained by the consistency analysis. This tells, that for h → 0 the
mass moments converge towards the solution of the advection equation (initialized
by v0), which, of course, does not know anything about the LB algorithm and thus
displays a grid independent evolution.

If the two algorithms run over long periods with T1 � 1, we realize that the peaks
start to deform their shape (see figure 2). Although this phenomenon is predicted
by the regular expansion (specifying the laeding error terms u(1), u(2)) the forecast
becomes totally wrong after a relatively short while. Furthermore we observe that
the flattening of the peak is more distinct on the coarser grid G1 than on G2, in spite
of comparing iterations corresponding to the same time. This insinuates that the
deformation process takes place in a time scale different from that of the advection.

In order to study the deformation alone without being “disturbed” by the advec-
tion it is possible to switch it off by setting a = 0. It turns out that the peaks

14The effect becomes the more evident the smaller h1 and h2 are chosen.

18 4 MULTISCALE EXPANSION

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−4

−3

−2

−1

0

1

2

3

4
x 10

−4

Figure 2:
Left: Advective(linear) versus diffusive(quadratic) time scale. Generally, the flattening
of the mass moment increases with the number of iterations. Here we have set ω = 1.3
and the advection velocity a = 0.5 has been chosen in such a way that the peak returns
to its initial position at the center after 200(400) iterations on a grid with 100(200)
nodes. So we can blind out the displacement by the advection avoiding to switch it off
totally. The subsequent table indicates to which grid and to which iteration the lines
(representing the mass moment) refer.

line #grid nodes #time steps

gray, dash-dotted 100 (G1) 400
gray, solid 200 (G2) 800
black solid 200 (G2) 1600

The fact that the black solid curve agrees with the gray dash-dotted curve suggests that
the flattening occurs in the quadratic time scale. The black dashed peak corresponds
to the initial condition. Right: Difference between the dash-dotted and the thin black
solid line (projected onto the coarse grid).

undergo the same deformation on both grids, if the iteration indices fulfill the con-
dition n1h

2
1 = n2h

2
2 (cf. figure 2). Similarly to T1 we therefore define another time

T2 with T2(n,G) := nh2, which elapses slower than T1 provided h < 1. In order
to distinguish both of the times we refer to T1 as linear time and designate T2 as
quadratic time. Moreover we also speak of time scales in this context.

A special situation is observed for ω = 2. Instead of a flattening, the deformation
of the mass moment expresses itself by a distortion due to oscillations (cf. figure
3). It turns out, that these oscillations evolve (emerge and modify themselves) even
slower than the quadratic time scale. This urges the conjecture that their evolution
can be described by means of the cubic time scale

(
introducing T3(n,G) = nh3

)
,

which is backed by figure 3.

4.1 A numerical experiment to detect different time scales 19

Recapitulating we can say that the the evolution of our lattice Boltzmann algorithm
appears as a superposition of several15 processes. Each one is governed by a time
scale of its own and can be interpreted as a grid independent process if regarded in
this scale. In the next subsection we apply the technique of multiscale expansions
to separate these processes from each other and to derive equations determining
their evolution.

15Here we could also broach the issue of initial layers representing a typical example of superposed
processes. Numerical initial layers are often triggered by crude initializations and evolve on a faster
time scale than the dominant one, which is of interest for the user of the algorithm. Some initial
layers evolve with respect to the discrete time scale (T0(n,G) = n).

20 4 MULTISCALE EXPANSION

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 3:

Advective(linear) versus diffusive(quadratic) and dispersive(cubic) time scale: The plots
display the mass moment on two different grids at different iterations (see table below).
For clarity each diagram shows two curves only. The initial mass moment is given by
the dashed line in the upper left subfigure. The flanks of this curve are quite steep near
the transition point where the flat zone passes over to the peak. Although it seems
to have kinks at the transition points, the function is everywhere arbitrarily smooth.
As this feature provokes relatively strong oscillations it is well suited to highlight the
effect. Observe that the two mass moments in the subfigure below at right match
so well, that they appear virtually identical. As 3200 = 23 · 200, there are 8 times
more iterations necessary to reach the same configuration of oscillations on a grid with
half the spacing size. This prompts us to assume that the evolution of the oscillations
becomes grid-independent if considered in the cubic time scale.

line #grid nodes #time steps

black solid 100 400
gray solid 200 800

gray solid (thick) 200 1600
gray dash-dotted 200 3200

Analogously to the example in figure 2 the advection velocity is set to a = 0.5, while
we have selected the special value ω = 2 for the relaxation frequency.

4.2 Additional quadratic time scale 21

4.2 Additional quadratic time scale

The previous subsection gives rise to a modification of the ansatz for the prediction
function. In order to capture both the advection in the linear time scale and the
flattening deformation in the quadratic time scale we equip the new prediction
function with two time arguments:

f [α](t1, t2, x) := f(0)(t1, t2, x) + hf(1)(t1, t2, x) + . . . + hαf(α)(t1, t2, x), (39)

Inspired by the observations, we want to choose f [α] in such a way that we have

F(t, x) ≈ f [α](t, ht, x) (40)

for t = tn = nh and x = xj = jh with n ∈ N0 and j ∈ Z. In particular, f [α] shall
satisfy the update rule (2) of the lattice Boltzmann algorithm with a small residual.

f
[α]
k (t + h, ht + h2, x + skh) = f

[α]
k (t, ht, x) +

[
J f [α](t, ht, x)

]

k
+ O(hα+1) (41)

We suppose that f [α] and its asymptotic order functions fulfill the same assumptions
concerning the regularity, 1-periodicity etc. as in subsection 3.1. Next, we substitute
(39) into (41). In order to find determining conditions for the f (β)’s we perform on
the left hand side a Taylor expansion of each f (β) around (t, ht, x). More precisely,
the formal Taylor series

[
f
(β)
k (t + h, ht + h2, x + skh)

]

k
=
∑

γ≥0

1

γ!
(hD + h2∂t2)

γ f(β)(t, ht, x)

is truncated after the (α − β)th order. Terms being of h-order greater than α
(including the remainder terms of the Taylor expansion) are incorporated into the
O(hα+1)-term. There is now some liberty to decide how the terms shall cancel
each other. A reasonable way16 is to equate those terms at the left and right hand
side which carry the same power of h as prefactor. Then we obtain the following
equations from the 0th, 1st, 2nd and 3rd order:

h0 : f(0) = (I + J)f(0)

h1 : f(1) + Df(0) = (I + J)f(1)

h2 : f(2) + Df(1) + 1
2D2f(0) + ∂t2 f

(0) = (I + J)f(2)

h3 : f(3) + Df(2) + 1
2D2f(1) + 1

6D3f(0) + ∂t2 f
(1) + D∂t2 f

(0) = (I + J)f(3)

(42)

16We proceed as if we could perform the comparison of coefficients. But actually, the
f
(β)(t, ht, x)’s at the left hand side are not completely expanded with respect to h. Therefore

the equality of terms containing the same power of h is not compellent if h is varied. Hence we are
not lead automatically to equations that determine the asymptotic order functions as in the case of
the regular expansion. Other settings are imaginable. This insinuates that multiscale expansions
are not unique in contrast to regular expansions. To illustrate this by a trivial example consider the
function f(n) = nh+nh2+n2h5. Introducing the variables t1 = nh and t2 = nh2 there is an infinite
multitude of possibilities. As the replacement of the third addend is not obvious we can express
it using either t1 or t2 or both of them by writing it in the from n2h5 = qn2h5 + (1 − q)n2h5

for some q ∈ R. Hence we obtain the following parameterized family of representations
fq(t1, t2) = (t1 + t2) + hqt22 + h3(1 − q)t31,

all of them satisfying f(n) = fq(nh, nh2).

22 4 MULTISCALE EXPANSION

Subtracting f(β) on each side of (42β) results in an equation for f (β) with the system
matrix J = ω(E − I). So the equations (42) correspond to (10). In particular we
obtain the same equations in the 0th and 1st order; only the equations from the 2nd

order on are affected by the modified ansatz, producing additional inhomogeneities.
As the structure of the equations stays unaltered, we can take over the results from
subsection 3.1 tracking only the additional terms.

Introducing the mass moments u(0), u(1), u(2) and taking the scalar product of the
equations in (42) with the vector 1 finally gives the subsequent equations17:

(421) ⇒ ∂t1u
(0) + a∂xu(0) = 0

(422) ⇒ ∂t1u
(1) + a∂xu(1) = µ∂2

xu(0) − ∂t2u
(0)∂t2u
(0)∂t2u
(0)

(423) ⇒ ∂t1u
(2) + a∂xu(2) = µ∂2

xu(1)∂2
xu(1)∂2
xu(1) + λ∂3

xu(0) − ∂t2u
(1)∂t2u
(1)∂t2u
(1)

(43)

In subsection 3.4 we have seen that the integration of the evolution equations for
u(1) and u(2) lead to secular terms, that do not reflect the behavior of the algorithm
on a long time scale. These terms are generated by the sources. A particular
reason, why secular terms show up, is, that the sources are themselves solutions
of (inhomogeneous) advection equations with equal advection velocity causing the
unbounded factors t and t2.
A view at (432) shows that we should encounter the same problem unless we require
the right hand side of (432) to vanish. In fact, by this setting18, we kill two birds
with one stone: Firstly, we avoid the arising of secular terms. Secondly, we find a
well known (homogeneous) diffusion equation, that determines the evolution of u(0)

with respect to t2.
Analogously we proceed with the next equation (433) which is decoupled into a
homogeneous advection equation for u(2) and a diffusion equation for u(1). This
time, the source term containing u(0) drives the diffusion equation for u(1) instead
of the advection equation for u(2). We will see that this prevents the appearance of
secular terms.

To summarize the reasoning, let us write down the initial value problems that
determine u(0) and u(1), where the initial conditions result from the requirement
v0(x) =

〈
F(0, x), 1

〉
=
〈
f [α](0, 0, x), 1

〉
:

∂t1u
(0)(t1, t2, x) + a∂xu(0)(t1, t2, x) = 0

∂t2u
(0)(t1, t2, x) − µ∂2

xu(0)(t1, t2, x) = 0

u(0)(0, 0, x) = v0(x)

(44)

17Observe that the scalar product 〈D∂t2 f
(0), 1〉 = ∂t2〈Df

(0), 1〉 = ∂t2

`
∂t1u

(0) + a∂xu(0)

| {z }

=0

´
= 0

does not contribute.
18Notice that we only give a motivation and no strict justification for our approach, which has

the appeal to break up a complicated, unconventional system into standard partial differential
equations (similarly to separation of variables for Laplacian in spherical coordinates etc.). To
reassure a reader being alarmed about this frivolity we recall that asymptotics often requires some
ingenuity to select good ansatz. A rigorous proof is mostly based on a stability analysis and rarely
reflects the idea, why a certain ansatz has been chosen. Furthermore it should be kept in mind
that multiscale expansions need not be unique.

4.2 Additional quadratic time scale 23

∂t1u
(1)(t1, t2, x) + a∂xu(1)(t1, t2, x) = 0

∂t2u
(1)(t1, t2, x) − µ∂2

xu(1)(t1, t2, x) = λ∂3
xu(0)(t1, t2, x)

u(1)(0, 0, x) = 0

(45)

A first hint locating the reason for the flattening deformation observed previously
(cf. figure 2) is given by the occurrence of the diffusion equation

(
second equation

in (44) and (45)
)
. Indeed, the smoothing of sharp extrema and the leveling of

steep slopes is the typical dynamics encoded in this equation and distinguishes it
fundamentally from the advection equation. A necessary condition for the diffu-
sion equation to display this behavior is the positivity of the diffusivity coefficient

µ = (1
ω
− 1

2)(1 − a2) determining how fast the smoothing process takes place. In
case of µ < 0 the smoothing behavior is reversed (ill-posedness of the backward
diffusion equation) and the solution behaves in a ‘bad’ manner, what the lattice
Boltzmann algorithm reflects by an instable comportment. In allusion to physical
diffusion processes the (artificial) smoothing effect of numerical schemes is referred
to as numeric diffusion19.

For each mass moment we interprete the equation systems (44) and (45) as two ini-
tial value problems that are coupled via a common initial condition and the spatial
variable x. The solution can be obtained consecutively starting with the diffusion
equation.

In order to acquire some feeling, how possible solutions of (44) and (45) are con-
structed and look like, let us consider an example. Since we are primarily interested
in 1-periodic solutions we choose a cosine20 as initial mass moment:

v0(0, 0, x) = cos(2πmx) m ∈ N.

At first solving the diffusion equation yields:

u(0)(0, t2, x) = exp
(
− 4π2m2µt2

)
cos
(
2πmx

)

Initializing the advection equation by u(0)(0, t2, x), where t2 is to be treated as a
mere parameter, results in the final solution:

u(0)(t1, t2, x) = exp
(
− 4π2m2µt2

)
cos
(
2πm(x − at1)

)
(46)

The diffusion equation for u(1) is inhomogeneous. The source itself is a solution of
a homogeneous diffusion equation with equal diffusivity µ. Therefore u(1) is just
obtained by multiplying λ∂3

xu(0) with t2:

u(1)(0, t2, x) = 8π3m3λt2t2t2 exp
(
− 4π2m2µt2

)
sin
(
2πmx

)

19Numeric diffusion may be regarded as an undesired and annoying property. However, in many
situations it has a stabilizing side action.

20Actually, this example is of much importance, since cos(2πmx) represents the general Fourier
mode. Thanks to the linearity of both equations the solution for an arbitrary 1-periodic initial
function v0 can be obtained by decomposing it into its Fourier modes. Solving the equations for
each Fourier mode separately, the solution pertaining to the original initial value is recovered by
superposition.

24 4 MULTISCALE EXPANSION

Substituting x by x − at1

u(1)(t1, t2, x) = 8π3m3λ t2 exp
(
− 4π2m2µt2

)
sin
(
2πm(x − at1)

)
(47)

makes u(1) satisfy all three equations in (45).

Similar to (36), we notice a factor t2 in the explicit representation of u(1). However,
in opposition to the regular expansion, the factor t2 is accompanied by the expo-
nential function exp

(
− 4π2m2µt2

)
damping u(1) to zero while t2 grows towards

infinity, if the diffusion coefficient µ is positive. So, under this condition, u(1) is
uniformly bounded, i.e. there are upper and lower bounds for all t ≥ 0).

The situation in the first order is characteristic for higher orders, because the struc-
ture of the evolution equations

∂t1u
(β)(t1, t2, x) + a∂xu(β)(t1, t2, x) = 0

∂t2u
(β)(t1, t2, x) − µ∂2

xu(β)(t1, t2, x) = inhomogeneity

u(β)(0, 0, x) = 0

is repeated for all β ∈ N. The only difference is given by the inhomogeneities that
become more complicated for higher orders. This entails particularly that tβ

2 occurs
as factor in the explicit formula for u(β). However, also higher powers of t2 are
tamed by the exponential function which decays more rapidly than any polynomial
can increase. So tβ2 exp(−4π2m2µht2) is uniformly bounded for any β and vanishes
at infinity (t ↑ ∞). Therfore we are allowed to conclude that the two-scale expan-
sion avoids secular terms.

The computations give rise to the hypothesis that the mass moment U = 〈F, 1〉
admits the representation

U(t, x) = u(0)(t, ht, x) + hu(1)(t, ht, x) + H.O.T

where H.O.T. stands for ‘higher order terms’ and

u(0)(t, ht, x) + hu(1)(t, ht, x) =

=
[

cos
(
2πm(x − at)

)
+ h2t 8π3m3λ sin

(
2πm(x − at)

)]

exp(−4π2m2µht).

Not that the factor h2 in front of the sine comes from the first order and the
substitution t2 = ht. Under the assumption that the higher order terms are well-
behaved, we infer:

• u(0)(t, ht, x) describes the behavior of U(t, x) with 2nd order accuracy in h
on time intervals whose length is of magnitude O(1). This means that the
maximal iteration index nmax satisfies the estimate nmaxh < C, where h
denotes the grid spacing and C is a given constant.

• u(0)(t, ht, x) describes the behavior of U with 1st order accuracy in h on ‘long’
time intervals whose length is of magnitude O(1

h
), i.e. the maximal iteration

index complies with the condition nmaxh
2 < C.

4.3 Additional cubic time scale 25

In particular, our results for u(0) and u(1) in (46) and (47) foreshadow that U re-
mains bounded independently of the number of iterations, if the algorithm is stable.

Indeed, all hypotheses are positively validated by numerical experiments. This
example gives evidence that the two-scale expansion may be clearly superior to the
regular expansion under certain circumstances like the appearance of secular terms.

4.3 Additional cubic time scale

Now let us look what happens with the multiscale expansion if we set ω = 2. In
this case the diffusivity coefficient µ = (1

ω
− 1

2)(1 − a2) becomes 0. So the diffusion

equation in (44) degenerates to ∂t2u
(0) = 0 implying that u(0) is not dependent on t2

at all. Taking the initial condition u(0)(0, 0, x) = v0(x) and the advection equation
into account this amounts to u(0)(t1, t2, x) = v0(x − at1). Thus u(0) does not cap-
ture a damping exponential factor, that could guarantee the uniform boundedness
of the u(β)’s with respect to the t2 similarly to the example d in the preceding sub-
section. Computing u(1)(t1, t2, x) = t2λv′′′0 (x − at1) we see that it gets unbounded
for t2 → ∞. Hence the two-scale expansion with the additional quadratic time scale
is not able to avoid secular terms.

In subsection 4.1, we have noticed (cf. figure 3), that for ω = 2 oscillations emerge
and modify themselves in the cubic time scale. This suggests to approximate the
population function by a prediction function f [α](t1, t3, x) having two time argu-
ments as well, but with the second one differently related to the nth iteration:

F(nh, jh) ≈ f(nh, nh3, jh) or F(t, x) ≈ f(t, h2t, x).

In order to keep this slight modification with respect to (40) in mind, we have
denoted the second temporal argument by t3. Again we choose for f the ansatz of
a polynomial f [α] of order α in h. Then, under analogous assumptions as in the
previous subsection, we can derive the following equations for α ≥ 4 to determine
the leading asymptotic order functions.

h0 : f(0) =(I + J)f(0)

h1 : f(1) + Df(0) =(I + J)f(1)

h2 : f(2) + Df(1) + 1
2D2f(0) =(I + J)f(2)

h3 : f(3) + Df(2) + 1
2D2f(1) + 1

6D3f(0) + ∂t3 f
(0) =(I + J)f(3)

h4 : f(4) + Df(3) + 1
2D2f(2) + 1

6D3f(1) + 1
24D4f(0) + ∂t3 f

(1) + D∂t3 f
(0) =(I + J)f(4)

. (48)

Similarly to the procedure in 3.1 and 4.2, these equations are written in terms of
the mass moments associated to the asymptotic order functions

(481) ⇒ ∂t1u
(0) + a∂xu(0) = 0

(482) ⇒ ∂t1u
(1) + a∂xu(1) = 0

(483) ⇒ ∂t1u
(2) + a∂xu(2) = λ̃∂3

xu(0) − ∂t3u
(0)

(484) ⇒ ∂t1u
(3) + a∂xu(3) = λ̃∂3

xu(1) − ∂t3u
(1)

(49)

26 4 MULTISCALE EXPANSION

where λ̃ := −1
6a(1 − a2) shortcuts the coefficient λ for ω = 2. Splitting (493)

into separate equations for the left and right hand side we get a complete21 set of
equations for u(0).

∂t1u
(0)(t1, t3, x) + a∂xu(0)(t1, t3, x) = 0

∂t3u
(0)(t1, t3, x) − λ̃∂3

xu(0)(t1, t3, x) = 0

u(0)(0, 0, x) = v0(x)

(50)

Moreover, combining (492) and (494) we find in the same way:

∂t1u
(1)(t1, t2, x) + a∂xu(1)(t1, t2, x) = 0

∂t3u
(1)(t1, t2, x) − λ̃∂3

xu(1)(t1, t3, x) = 0

u(1)(0, 0, x) = 0

(51)

The second equation of (50) states that the dynamics of u(0) in the slow time variable
is described by a dispersive equation. A characteristic property of this equation is
to disperse a peak into a sequence of oscillations similarly to what we have observed
(cf. figure 3). The reason for this behavior is found if we study the evolution of a
single Fourier mode. Let us therefore consider a sinusoidal initial condition:

v0(x) = cos(2πmx).

Integrating the dispersion equation in (50) with this initialization yields

u(0)(0, t3, x) = cos
(
8π3m3λ̃t3 + 2πmx

)
. (52)

Differently from the diffusion equation, the sinusoidal profile is transported and not
damped. In contrast to the advection equation which conserves the initial profile
the transport velocity depends on the spatial frequency of the cosine. Hence the
Fourier modes of an arbitrary initial profile travel with different speeds. This effect
destroys the original shape of the profile.
Taking (52) as initial condition for the advection equation in (50) yields the final
result for u(0).

u(0)(t1, t3, x) = cos
(
8π3m3λ̃t3 + 2πm(x − at1)

)

Let us now turn to (51) that differs from the analogous equations (21) and (45),
because of the missing source term. Due to the zero initial condition u(1) must
vanish.

u(1)(t1, t3, x) = 0

Thus, the asymptotic expansion of the mass moment omits the first order for ω = 2,
wherefore the lattice Boltzmann scheme reaches higher accuracy in this case as
mentioned earlier in subsection 3.3.

21Observe that we must expand up to the third order to extract the full set of evolution equations
determining u(0).

4.3 Additional cubic time scale 27

How does the expansion continue? In general the second order u(2) does not vanish.
Due to the resonance effect22 it will be of the form t3w(t1, t3, x) with some function
w. Resubstituting t1 by t and t3 by h2t produces a factor h4 in front of u(2). This
indicates that u(0) should approximate the mass moment U up to a residue of mag-
nitude O(h4) over time intervals of constant length. This hypothesis is supported
by numerical tests. The approximation order is reduced by 1 and 2 respectively if
we couple the number of iterations quadratically or cubically to the inverse of the
grid spacing h (time intervals of length O(h−2) or O(h−3)).

To better understand how the particularity of the missing first order comes about, let us close this
subsection by delivering the computation in detail:

In order to obtain (493) and from this (51) we must take the scalar product of (484) with 1. Since

〈J f
(4), 1〉 = 0, and 〈D∂t3 f

(0), 1〉 = ∂t3〈Df
(0), 1〉 = ∂t3(∂tu

(0) + a∂xu(0)) = 0

we get

0 =

=∂t3u(1)

z }| {

〈∂t3 f
(1), 1〉+

=:A
z }| {

〈D f
(3), 1〉 + 1

2
〈D2

f
(2), 1〉 + 1

6
〈D3

f
(1), 1〉 + 1

24
〈D4

f
(0), 1〉 .

It remains to compute A. Applying D4, D3, D2 and D to (481−3) and taking the scalar product
with 1 yields the following identities

〈D f
(3), 1〉 = 〈D E

(3), 1〉 − 1
ω
〈D2

f
(2), 1〉 − 1

2ω
〈D3

f
(1), 1〉 − 1

6ω
〈D4

f
(0), 1〉

〈D2
f
(2), 1〉 = 〈D2

E
(2), 1〉 − 1

ω
〈D3

f
(1), 1〉 − 1

2ω
〈D4

f
(0), 1〉

〈D3
f
(1), 1〉 = 〈D3

E
(1), 1〉 − 1

ω
〈D4

f
(0), 1〉

〈D4
f
(0), 1〉 = 〈D4

E
(0), 1〉

where we have once again used 〈D∂t3 f
(0), 1〉 = 0 for the first equation and J f

(β) = ωE
(β) − ωf

(β).
Thereby we get for A:

A = 〈Df
(3), 1〉 + 1

2
〈D2

f
(2), 1〉 + 1

6
〈D3

f
(1), 1〉 + 1

24
〈D4

f
(0), 1〉

= 〈DE
(3), 1〉 + (1

2
− 1

ω
)

| {z }

=0 for ω=2

〈D2
f
(2), 1〉 + (1

6
− 1

2ω
)〈D3

f
(1), 1〉 + (1

24
− 1

6ω
)〈D4

f
(0), 1〉

= 〈DE
(3), 1〉 + (1

6
− 1

2ω
)〈D3

E
(1), 1〉 +

ˆ
(1
24

− 1
6ω

) − 1
ω
(1
6
− 1

2ω
)
˜
〈D4

f
(0), 1〉

= 〈DE
(3), 1〉 + (1

6
− 1

2ω
)

| {z }

=−1/12 for ω=2

〈D3
E

(1), 1〉 +
ˆ

1
24

− 1
3ω

+ 1
2ω2

˜

| {z }

=0 for ω=2

〈D4
f
(0), 1〉

= 〈DE
(3), 1〉 − 1

12
〈D3

E
(1), 1〉

22Generally: If A is some (linear, spatial differential) operator and x(t, ·) a solution of the
homogeneous equation ∂tx + Ax = 0 then y(t, ·) = tx(t, ·) is a solution of the inhomogeneous
equation ∂ty + Ay = x. So the solution of the equation (describing the behavior of some physical
system) imitates (reacts like) the source while amplified in time due to the multiplication with t.
This phenomenon is called resonance. Moreover, y becomes unbounded if x does not decay faster
to 0 than 1/t as t → ∞ (resonance catastrophe).

Concretely: The dispersive equations arising in the asymptotic orders do not differ in the main
part (equal dispersion coefficient λ̃) but only in the source terms, that are solutions of lower order
dispersive equations. Therfore the solutions contain powers of t3 as factors. Since there is no
exponential damping as in the case of the diffusion equation we expect the expansion to produce
secular terms too similarly to the case of the advection equation (regular expansion) but in a much
slower time scale.

28 4 MULTISCALE EXPANSION

Next, we employ 〈DE
(3), 1〉 = ∂t1u

(3) + a∂xu(3) and

〈D3
E

(1), 1〉 = 1
2

˙
(∂3

t1 + 3s∂2
t1∂x + 3∂t1∂

2
x + s∂3

x)(1 + as)u(1), 1
¸

= −2a(1 − a2)∂3
xu(1)

where the latter formula holds true as u(1) also solves the homogeneous advection equation. Thus,
we finally arrive at

∂t3u
(1) + ∂t1u

(3) + a∂xu(3) − 1
12

`
− 2a(1 − a2)

´
∂3

xu(1) = 0

which is equivalent to (493).

29

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

grid nodes:200
iteration :50

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

grid nodes:200
iteration :800

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

grid nodes:200
iteration :4000

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

grid nodes:200
iteration :100000

Figure 4:
The figure shows four snapshots of the mass moment U(nh, ·) (gray dashed). The
thin solid line indicates the prediction u(0)(nh, ·)+hu(1)(nh, ·)+h2u(2)(nh, ·) obtained
by the regular expansion. In contrast, the black dashed line refers to the prediction
u(0)(nh, nh3, ·) that results from the multiscale expansion.
After 50 iterations (t = 0.25) the initial profile is shifted rightwards by 0.2 length units
(a = 0.8); the distortion is hardly visible. 750 iterations later (t = 4) the distortion
becomes noticeable. The regular expansion displays serious problems at the two knees
where very sharp peaks are formed that evoke a certain similarity to the second and third
derivative of the initial profile (see figure 5). Due to the secular terms in the regular
expansion the derivatives of the initial profile are amplified in time, what makes the
peaks grow quickly outside the range of the coordinate system. While the multiscale
prediction imitates the oscillations of U very well even after 100000 iterations, the
resemblance between U and the regular prediction is lost.

5 Appendix

Here we give the analytic description of the bump-like test profile that we have used
as initial condition to illustrate the cubic time scaling (cf. figure 3) and to validate

30 5 APPENDIX

the two-scale expansion with cubic time (cf. figure 4).

φ(x) :=

x ≤ 0.3 : 0

0.3 < x < 0.7: exp

(

−15−2
(
(x+0.2)−0.5

)2

)

· exp

(

−15−2
(
(x−0.2)−0.5

)2

)

0.7 ≤ x : 0

The function φ is arbitrarily smooth (no kinks) but not analytic. Note that each

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1
φ

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15
dφ

0 0.2 0.4 0.6 0.8 1
−200

0

200

400

600

800
d2φ

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

5 d3φ

Figure 5:
Left above: Test profile for initializing the mass moment. The other figures display the
first, second and third spatial derivative. Compare the orders of magnitude concerning
the scaling of the ordinates.

derivative is at least one order of magnitude larger than the previous one. This
explains why the regular expansion containing higher order derivatives ‘explodes’
rapidly. Furthermore φ is identically zero outside of the bump, which means that
all derivatives vanish there too. By this reason the regular expansion has no chance
even rudimentarily to mimick the oscillations in figure 3 that fill the whole interval.

The computation of the two-scale prediction for the mass moment in figure 4 is
based on a Fourier decomposition of φ.

REFERENCES 31

References

[1] A. Caiazzo. Analysis of lattice Boltzmann initialization routines. J. Stat. Phys.,
121:37–48, 2005.

[2] M. Junk, A. Klar, and L.S. Luo. Asymptotic analysis of the lattice Boltzmann
equation. Journal Comp. Phys., 210:676–704, 2005.

[3] M. Junk and Z. Yang. Analysis of lattice Boltzmann boundary conditions. Proc.

Appl. Math. Mech., 3:76–79, 2003.

[4] M. Junk and Z. Yang. Asymptotic analysis of finite difference methods. Appl.

Math. Comput., 158:267–301, 2004.

[5] M. Junk and Z. Yang. Asymptotic analysis of lattice Boltzmann boundary
conditions. J. Stat. Phys., 121:3–35, 2005.

[6] M. Junk and Z. Yang. One-point boundary condition for the lattice Boltzmann
model. Phy. Rev. E, 72, 2005.

[7] M. Rheinländer. A consistent grid coupling method for lattice-Boltzmann
schemes. J. Stat. Phys., 121:49–74, 2005.

