Universität Kaiserslautern Fachbereich Mathematik Dr. Cristian–Aurelian Coclici

Numerical Methods for Partial Differential Equations Tutorial 1

Exercise 1: Consider the initial value problem for the scalar conservation law

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (f(u)) = 0, \quad (x, t) \in \mathbb{R} \times (0, \infty),$$

$$u(x, 0) = u_0(x), \quad x \in \mathbb{R},$$
(1)

where the functions $f \in C^2(\mathbb{R})$ and $u_0 \in C^1(\mathbb{R})$ satisfy the relation

$$\exists I \subset \mathbb{R}$$
 : $f''(u_0(x)) u_0'(x) < 0$ for all $x \in I$.

- 1. Use the method of characteristics to show that the initial value problem (1) admits a classical solution u(x,t) defined for $0 \le t < t_B$ with a positive time t_B ;
- 2. Apply the theory of implicite functions to determine the "breaking time"

$$t_B = \inf_{x \in I} \left[-\frac{1}{f''(u_0(x)) u_0'(x)} \right] > 0.$$

3. Check the relation $u(x,t) = u_0(x - tf'(u(x,t)))$ for $0 \le t < t_B$ and use it to show that the partial differential equation $(1)_1$ is pointwise satisfied in $\mathbb{R} \times (0,t_B)$.

Exercise 2: Consider the initial value problem with the Burgers' equation

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} \left(\frac{u^2}{2} \right) = 0 \quad \text{for} \quad (x, t) \in \mathbb{R} \times (0, \infty),$$

$$u(x, 0) = u_0(x) := \begin{cases}
1 & \text{for } x \le 0, \\
1 - x & \text{for } 0 < x \le 1, \\
0 & \text{for } x > 1.
\end{cases} \tag{2}$$

Using the method of characteristics, show that problem (2) admits a classical solution defined for $t \in [0, 1)$. Show that this solution consists of a front moving to the right and steepening until it becomes a shock at t=1.

Exercise 3: A simple model for the description of the vehicular traffic is given by the conservation equation for the vehicles density $\varrho = \varrho(x,t) : \mathbb{R} \times (0,\infty) \to \mathbb{R}$,

$$\frac{\partial \varrho}{\partial t} + \frac{\partial}{\partial x} \left\{ 11\varrho \cdot \log \frac{142}{\varrho} \right\} = 0. \tag{3}$$

Consider the initial value problem consisting of equation (3) with the initial condition

$$\varrho(x,0) = \varrho_0(x) := \begin{cases} 10 & \text{for } x \le 0 \text{ or } x \ge 60, \\ x+10 & \text{for } 0 < x \le 30, \\ 70-x & \text{for } 30 < x < 60. \end{cases}$$

Calculate the breaking time t_B and use the method of characteristics to determine ϱ at times t = 0.5; 1; 1.5.