Universität Kaiserslautern Fachbereich Mathematik Dr. Cristian–Aurelian Coclici Dipl.–Phys. Martin Rheinländer

Numerical Methods for Partial Differential Equations Tutorial 3

Exercise 6: Let $\varepsilon > 0$. Use the method of characteristics for solving the problem

$$u_t + u u_x = 0 \text{ for } (x, t) \in \mathbb{R} \times (0, \infty),$$

$$u(x,0) = u_0(x) := \frac{1}{\varepsilon} x \text{ for } x \in \mathbb{R}.$$

Consider then the initial value problem with the Burgers equation, where

$$u_0(x) := \begin{cases} 0 & \text{for } x \le -\sqrt{\varepsilon}, \\ \frac{1}{\varepsilon} x & \text{for } -\sqrt{\varepsilon} < x < \sqrt{\varepsilon}, \\ 0 & \text{for } x \ge \sqrt{\varepsilon}. \end{cases}$$

Calculate the solution in this case by using the Rankine-Hugoniot conditions.

Indication: The discontinuity curves in the second case are given by $\sigma_{\pm}(t) = \pm \sqrt{t+\varepsilon}$.

Exercise 7: Let u be a piecewise smooth, discontinuous weak solution of

$$\frac{\partial u}{\partial t} + \frac{\partial}{\partial x} (f(u)) = 0 \quad \text{in} \quad \mathbb{R} \times (0, \infty), \tag{1}$$

with a strictly convex flux function $f \in C^2(\mathbb{R})$. Let $\Sigma := \{(\sigma(t), t) \mid t > 0\}$ be a smooth curve in $\mathbb{R} \times [0, \infty)$ across which u is discontinuous. For $(x_0, t_0) \in \Sigma$, let $u_{\ell} := \lim_{\varepsilon \to 0} u(x_0 - \varepsilon, t_0), \ u_r := \lim_{\varepsilon \to 0} u(x_0 + \varepsilon, t_0)$ denote the one-sided limits of u on Σ . Prove that the entropy condition

$$\left[\eta(u_{\ell}) - \eta(u_r)\right] \cdot \frac{d\Sigma}{dt} \le \Psi(u_{\ell}) - \Psi(u_r) \tag{2}$$

is satisfied for some entropy pair $(\eta(u), \Psi(u))$ with strictly convex entropy η (and with $\Psi' = \eta' f'$) if and only if the condition $\underline{u_{\ell} > u_r}$ is fulfilled.

In addition, if the entropy condition (2) is satisfied for a given entropy pair (η, Ψ) , then it is satisfied for any entropy pair $(\widetilde{\eta}, \widetilde{\Psi})$ with $\widetilde{\eta}'' > 0$.

Indication: For the entropy pair (η, Ψ) and for fixed u_r , consider the functions $s, E_{(\eta, \Psi)} : \mathbb{R} \to \mathbb{R}$ defined by

$$s(u) := \frac{f(u) - f(u_r)}{u - u_r}, \quad E_{(\eta, \Psi)}(u) := [\eta(u) - \eta(u_r)] \cdot s(u) - [\Psi(u) - \Psi(u_r)].$$

Check the relations:

$$s' > 0$$
 in \mathbb{R} , $E_{(\eta,\Psi)}(u_{\ell}) \le 0$, $E_{(\eta,\Psi)}(u_r) = 0$, $E'_{(\eta,\Psi)}(u_r) = 0$,

and prove the relations

$$E'_{(\eta,\Psi)}(u) = (u - u_r)(\xi - u)s'(u)\eta''(\zeta) < 0$$
 for any $u \neq u_r$,

with ξ and ζ situated between u and u_r . The equivalence to be shown follows then immediately.