Universität Kaiserslautern Fachbereich Mathematik Dr. Cristian–Aurelian Coclici Dipl.–Phys. Martin Rheinländer

Numerical Methods for Partial Differential Equations Tutorial 8

Exercise 14 (Programming exercise):

For the discretization of the linear advection equation $u_t + au_x = 0$ in $(-1,1) \times (0,T)$ (T>0) equipped with the initial condition $u(\cdot,0) = u_0$ in [-1,1] and with periodic boundary conditions u(-1,t) = u(1,t) for $t \in [0,T]$, consider a set of uniform grids $\Delta_0 \subset \Delta_1 \subset \Delta_2 \subset \Delta_3$ with

$$\Delta_k := \{ (i(\Delta x)_k, n(\Delta t)_k) \mid i \in I_k, \ n \in \{0, ..., N_k\} \}, \quad k = 0, 1, 2, 3,$$

where $(\Delta x)_0$, $(\Delta t)_0 > 0$ are fixed and $(\Delta x)_k = \frac{1}{2}(\Delta x)_{k-1}$, $(\Delta t)_k = \frac{1}{2}(\Delta t)_{k-1}$ for k = 1, 2, 3.

Applying the linear methods you have implemented: Upwind, Lax-Friedrichs, Enquist-Osher, Godunov, Lax-Wendroff (evtl. Beam-Warming), calculate the approximate solutions $w_k(x,t)$ on each of the different grids, and determine the corresponding global errors $e_k(x,t)$ on $[-1,1] \times [0,T]$, k=0,1,2,3 for each method applied.

Verify the convergence properties of the numerical solutions by checking whether the quantities

$$\sup_{0 \le t \le T} \left\| e_k(\cdot, t) \right\|_V$$

tend to zero with increasing level of refinement k. As space norm $\|\cdot\|_V$ you can take

Give appropriate numerical evaluations for the error expressions and implement them. Examine the experimental orders of convergence

$$\alpha := \frac{\log \left(\|w_{k_1}^{ex} - w_{k_1}\| \right) - \log \left(\|w_{k_2}^{ex} - w_{k_2}\| \right)}{\log((\Delta x)_{k_1}) - \log((\Delta x)_{k_2})}$$

for the different methods by using grids with gridsizes $(\Delta x)_{k_1}$, $(\Delta x)_{k_2} \in \{(\Delta x)_0, (\Delta x)_1, (\Delta x)_2, (\Delta x)_3\}$. By w_k^{ex} we denote the piecewise constant projection of the exact solution w on the grid Δ_k .

Compare the experimental convergence orders with the orders of consistency of the different linear methods considered (Lax equivalence theorem).