
Explicit Jump Immersed Interface Method:

Documentation for 2D Poisson Code

V. Rutka A. Wiegmann

November 25, 2005

Abstract

The Explicit Jump Immersed Interface method is a powerful tool to
solve elliptic pde with singular source terms, in complex domains, or with
discontinuous coefficients. Examples include 2d Poisson problems, 2d and
3d linear elasticity and 2d Stokes to name a few. The power of the EJIIM
lies in the fact that not grid generation is needed. EJIIM works on a
uniform Cartesian grid and uses additionally some information about the
boundary or interface location such as intersections with grid lines, normals
and curvatures at these points, etc. On the other hand, the implementation
of the EJIIM is rather involved. To make it easier to overcome the initial
hurdle of using it, we provide matlab code and this documentation that
contains detailed explanations of this code for two dimensional Poisson
boundary value problems. We have tried to keep the notation as close to
the sources as possible. For details of the method see [4, 5, 1]

Keywords: Immersed Interface Methods (IIM), source code, elliptic partial
differential equations, finite differences, regular grid

1 Problem statement

To solve is the following Poisson boundary value problem






∆u = f in Ω ⊂ R
2

u = uD on ∂ΩD (Dirichlet boundary)

∂nu = uN on ∂ΩN (Neumann boundary)

(1)

In the actual version of the code the following parameters are set:

1



• f(x, y) = x2 + y (set in function ASSEMBLE/set rhs.m)

Attention: if you are changing the form of the right hand side function f
(stored in variable F), then you have to change manually also the jump in
the right hand side, stored in variable jf.

• Ω can have two shapes: ‘circle’ or ‘flower’.

– ‘Circle’ is given by

(x − xc)
2 + (y − yc)

2 ≤ R2

with some parameters xc, yc and R.

– The boundary of the domain ‘flower’ is given by

{

x = 0.55(R + 0.15 sin(5θ)) cos θ + xc

y = 0.55(R + 0.15 sin(5θ)) sin θ + yc

, θ ∈ [0, 2π) .

Parameters xc, yc and R are given in ASSEMBLE/problem setup.m.

• ∂Ω is splitted into two distinct parts:

∂ΩD := {(x, y) ∈ ∂Ω
∣
∣ x < xlevel}

∂ΩN := ∂Ω\∂ΩD

Parameter xlevel is set in ASSEMBLE/problem setup.m.

Points, where the boundary of Ω cuts the grid lines are called intersec-

tion points. In code they are always stored in structure variables IX. IX D

contains intersection points on ∂ΩD and IX N – the intersection points on
∂ΩN . Separation of these two sets of intersection points is done in ASSEM-
BLE/separate boundaries.m.

• uD = x2 and uN = n1 + n2. The Dirichlet boundary condition function uD

is stored in variable uD, the Neumann boundary condition is stored in uN.
(Function ASSEMBLE/set rhs.m)

2 EJIIM idea

2.1 Embedding into a rectangular domain

The original domain Ω is embedded in a rectangle Ω∗ := (ax, bx) × (ay, by).
Parameters ax, bx, ay and by are given in ASSEMBLE/problem setup.m.

2



After embedding, the original domain Ω becomes a ‘–’ phase Ω− and the rest is
typically denoted by ‘+’ phase Ω+ := Ω∗\(Ω−). The boundary ∂Ω becomes an
interface and boundary conditions turn into jump conditions. The extension is
done by zero in Ω+, thus, on ∂Ω∗ homogeneous Dirichlet boundary conditions
can be imposed.

Attention: The embedding rectangle has to be selected in such a way that there
is “enough” space between ∂Ω and ∂Ω∗. “Enough” depends on the mesh width
used in discretisation. In any case, there should be at least several layers of grid
points between ∂Ω and ∂Ω∗.

2.2 Discretisation in a rectangle

Over Ω∗ a regular grid with mesh widthes hx and hy in x and y directions respec-
tively is imposed. In code they are denoted by hx and hy. nx and ny, in code nx

and ny (ASSEMBLE/problem setup.m) are the number of grid points in x and
y directions. Important is to note that number of grid points should be counted
in Matlab convention, it is, starting from 1 and not from 0.

Due to the simplified geometry pre-processor which is used in the online version
of the code, the parameters nx and ny have to be selected such that hx and hy

are equal. This restriction can be removed without any further changes if the
geometry pre-processor is replaced.

The ∆ operator of (1) is discretised in Ω∗ by standard central finite differences:

∆u ≈ 1

h2
x

(ui+1,j − 2ui,j + ui−1,j) +
1

h2
y

(ui,j+1 − 2ui,j + ui,j−1) . (2)

The resulting standard finite difference matrix is denoted by A, is stored in
variable A and computed by function DIFFOP/sysmatrix poisson.m.

2.3 Correction terms

The points where the 5-point stencil is cut by the interface are called irregular

points. There, the approximation (2) has to be corrected by adding so called
correction terms. They can be written for each of the appearing derivatives in
(1) separately.

3



α

α
x

y
x

yj+1

2

1

i+1

i

j

2.3.1 Correcting the second order differences

Consider a situation like in figure above and let (xα1, yα1) be the coordinates of
the intersection point α1 and (xα2, yα2): coordinates of the intersection point α2.
Let h+ := xi+1 − xα1, h− := xi − xα1, k+ := yj+1 − yα2, k− := yj − yα2. Then,
the corrected differences of second order derivatives are

∂xxu(xi, yj) ≈ 1

h2
x

(ui+1,j − 2ui,j + ui−1,j)

− 1

h2
x

(

[u]α1
+ h+[∂xu]α1

+
1

2
(h+)2[∂xxu]α1

)

(3)

∂xxu(xi+1, yj) ≈ 1

h2
x

(ui+2,j − 2ui+1,j + ui,j)

+
1

h2
x

(

[u]α1
+ h−[∂xu]α1

+
1

2
(h−)2[∂xxu]α1

)

(4)

for derivatives in x-direction and similarly for the y-derivatives

∂yyu(xi, yj) ≈ 1

h2
y

(ui,j+1 − 2ui,j + ui,j−1)

− 1

h2
y

(

[u]α2
+ k+[∂yu]α2

+
1

2
(k+)2[∂yyu]α2

)

(5)

∂yyu(xi, yj+1) ≈ 1

h2
y

(ui,j+2 − 2ui,j+1 + ui,j)

+
1

h2
y

(

[u]α2
+ k−[∂yu]α2

+
1

2
(k−)2[∂yyu]α2

)

(6)

Note, we have introduced new variables into a system. At each intersection point
we have 6 new unknowns: [u], [∂xu], [∂yu], [∂xxu], [∂yyu] and [∂xy], where in the
case of Poisson equation some of them are redundant.

4



In general, jump in the mixed derivative is not used in expressions (3–6) and jumps in

x-derivatives are not used at y-intersections, as well as jumps in y-derivatives are not

used in x-intersections.

All jumps are stored in one supervector J (see ASSEMBLE/run ejiim.m, variable
J) with ordering

J = ([u]α1
, [∂xu]α1

, [∂yu]α1
, [∂xxu]α1

, [∂yyu]α1
, [∂xyu]α1

, [u]α2
, . . . , [∂xyu]αl

)

where l is the number of intersection points α1, α2, . . . , αl. Coefficients of J
in the correction terms (3–6) are stored in matrix Ψ, in code denoted by P (see
ASSEMBLE/run ejiim.m).

With this, approximation of the differential operator ∆ in domain Ω∗ can be
written as

AU + ΨJ = F (7)

2.3.2 Details of constructing the P matrix

Matrix Ψ, in code stored in variable P is constructed of two parts

Ψ = (ΨD , ΨN) ,

where ΨD corresponds to intersection points belonging to ∂ΩD and ΨN – to
intersection points along ∂ΩN .

Each of ΨD and ΨD is constructed as sum

ΨD = Ψxx
D + Ψ

yy
D

ΨN = Ψxx
N + Ψ

yy

N

where Ψxx corrects the approximation of ∂xx derivative according to (3,4) and
Ψyy corrects the approximation of ∂yy derivative according to (5,6). See ASSEM-
BLE/run ejiim.m.

Note: Matrix Ψ depends only on the differential operator and geometry. No
dependence on boundary conditions!

Construction of the matrix Ψ is done in function DIFFOP/corrections.m. The
interface information is stored in the structure variable IX, see Section 3 for
details.

Constructing of Ψxx matrix

Idea: run a loop over all intersection points and check, which grid points are
affected.

5



We know that ∂xx derivative is affected only by x-type intersections, so the matrix
Ψxx has zeros in the right block, corresponding to y-type intersection points.

In a loop over all x-intersections:

1. Determine the coordinates of the anchor point, call it (xi, yj).

2. Check if the interface lies left or right from the anchor point.

• If interface lies LEFT from the anchor, use (4) at point (xi, yj) and
(3) at (xi−1, yj).

• If interface lies RIGHT from the anchor, use (3) at the point (xi, yj)
and (4) at (xi+1, yj)

Construction of Ψyy is done completely analogously, only now zeros are in the
left block of Ψyy and loop has to be done over all intersections.

In the actual version of the code, the EJIIM system is solved by Matlab ‘\’-
operator. For larger problems, especially three dimensional, the Schur-complement
approach together with some fast solver for inverting the operator A is highly
suggested [3, 1, 2].

2.4 Additional equations for jumps

At first, jumps are expressed in terms of known quantities, like boundary condi-
tions, and one sided derivatives. Then, for jumps at arbitrary intersection point
we can write equations

• Dirichlet b.c.
[u] = −uD

∂xu
− + [∂xu] = 0

∂yu
− + [∂yu] = 0

∂xxu
− + [∂xxu] = 0

∂yyu
− + [∂yyu] = 0

∂xyu
− + [∂xyu] = 0

(8)

• Neumann b.c.

u− + [u] = 0
t21∂xu

− + t1t2∂yu
− + [∂xu] = −n1uN

t1t2∂xu
− + t22∂yu

− + [∂yu] = −n2uN

∂xxu
− + [∂xxu] = 0

∂yyu
− + [∂yyu] = 0

∂xyu
− + [∂xyu] = 0

(9)

6



jy

x i

Note that the one sided derivatives depend on the unknown solution. Our goal
is to approximate them using a least squares fit of a quadratic polynomial.

The first step is to select the stencil for least squares interpolation. We follow
the methodology from [3]. It is done by selecting some radius k ∈ N and then
taking all grid points of Ω− inside circle with radius k

√
hxhy. (Line 73 in DIF-

FOP/d matrix.m.) With l we denote the stencil cardinality.

For each stencil point we try to fit a quadratic polynomial:

u(xi, yj) ≈ p(xi, yj) := p1 + p2hi + p3kj + p4h
2
i + p5k

2
j + p6hikj ,

where hi := xi−xα and kj := yj−yα. With this a weighted least squares problem
is obtained: ∑

(xi,yj)∈ stencil

w2
i,j (p(xi, yj) − ui,j)

2 −→
P

min

where P := (p1, p2, p3, p4, p5, p6)
>. In the code the following weights are used:

wi,j = (1 + d(xi, yj)/hx)
−1 , d(xi, yj) :=

√

h2
i + k2

j .

For a given grid function U , coefficients of the polynomial are given by

P = (M>W 2M)−1(M>W 2RU) ,

where
W := diag(wi1,j1, wi2,j2, . . . , wil,jl

)

7



and

M :=






...
...

...
...

...
...

1 hi kj h2
i k2

j hikj

...
...

...
...

...
...






(in code this is the matrix MM in DIFFOP/d matrix.m.)

Matrix R is the restriction operator, RU restricts the vector U defined at all grid
points to its values only at the stencil points. R is possible to write explicitely,
however, we have found that this costs enormous computational time and be-
cause of this reason in code the matrix W 2R is directly computed (matrix W2R in
DIFFOP/d matrix.m).

Note that

u(xα, yα) ≈ p1

∂xu(xα, yα) ≈ p2

∂yu(xα, yα) ≈ p3

∂xxu(xα, yα) ≈ 2p4

∂yyu(xα, yα) ≈ 2p5

∂xyu(xα, yα) ≈ p6

and this allows us to write the corresponding one-sided derivatives as

(u−, ∂xu
−, ∂yu

−, ∂xxu
−, ∂yyu

−, ∂xyu
−)> = BU ,

where
B := S(M>W 2M)−1(M>W 2R) .

In DIFFOP/d matrix.m to matrix B corresponds the variable B.

Using (8) we obtain in the case of Dirichlet boundary condition

0 · B(1, :) U + [u] = −uD

1 · B(2, :) U + [∂xu] = 0
1 · B(3, :) U + [∂yu] = 0
1 · B(4, :) U + [∂xxu] = 0
1 · B(5, :) U + [∂yyu] = 0
1 · B(6, :)
︸ ︷︷ ︸

These form matrix D

U + [∂xyu] = 0
︸︷︷︸

These form vector F̃

8



Using (9) we get for Neumann boundary

1 · B(1, :) U + [u] = 0
(t21B(2, :) + t1t2B(3, :)) U + [∂xu] = −n1uN

(t1t2B(2, :) + t22B(3, :)) U + [∂yu] = −n2uN

1 · B(4, :) U + [∂xxu] = 0
1 · B(5, :) U + [∂yyu] = 0
1 · B(6, :)
︸ ︷︷ ︸

These form matrix D

U + [∂xyu] = 0
︸︷︷︸

These form vector F̃

In code this corresponds to lines 95—115 in DIFFOP/d matrix.m.

Thus, the system for jumps can be written as

DU + J = F̃ . (10)

In code, the matrix D (stored in variable D) and the right hand side vector F̃
(stored in variable Ft) consist each of two parts, corresponding to Dirichlet and
Neumann intersection points:

D =

(
DD

DD

)

, F̃ =

(
F̃D

F̃N

)

.

(ASSEMBLE/run ejiim.m.)

Note: matrix D and vector F̃ depend on boundary conditions!

2.5 Solving the resulting system

Using the relations (7) and (10) the (augmented) EJIIM system is written
(
A Ψ

D I

) (
U
J

)

=

(
F

F̃

)

where I is the identity operator.

In code (see ASSEMBLE/run ejiim.m) the following notations are used:

EJIIM MATR :=

(
A Ψ

D I

)

, EJIIM RHS :=

(
F

F̃

)

, SOL :=

(
U
J

)

2.6 Visualisation of the results

Visualisation is done in ASSEMBLE/visualise solution.m.

9



3 Example of interface structure

If you are going to replace the built-in geometry pre-processor by your own one,
it has to provide the interface structure IX. Probably the best way to explain
how it has to look like is a concrete example.

2 3

4

5

6

8 9 10 11

12

13
14

19

20

21

23 24 25
26

16

18

17

22

1

7

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

y    = 0.1

y    = 0.3

y    = 0.4

y    = 0.5

y    = 0.6

y    = 0.7

y    = 0.8

y    = 0.9

y    = 0

y    = 0.2

5

6

7

8

y    = 111

10

9

4

3

2

1

x x x x x x x x x x x1 2 3 4 5 6 7 8 9 10 11

Light blue lines indicate the grid lines and the domain Ω∗ is in this case a unit
square with nx = ny = 11 and hx = hy = 0.1. On the black marked part of the
boundary, Dirichlet boundary condition is given, the green one is the Neumann
boundary.

Blue filled circles mark x-type intersection points, red filled circles are intersection
points of y-type. Blue crosses mark the anchor points for x-intersections, red
empty circles mark the anchor points for y-intersections.

10



Interface structure has following fields:

• coord: coordinates of the intersection points

• type: has values ‘x’ or ‘y’ corresponding to x and y-type intersections

• anch: indices of the anchor point. To a given intersection point (xα, yα) the
anchor is defined as follows: It is a point (xi, yj) ∈ Ω− such that

– for x-intersections: yj = yα and |xi − xα| < hh

– for y-intersections: xi = xα and |yj − yα| < hy

• n: components of the normalised normal vector at each of the intersection
points.

• t: components of the tangential vector at each of the intersection points.
The pair (n, t) has to form a right hand system. In two dimensions, t =
(−n2, n1).

Ordering of the intersection points

Currently, the code is constructed in such way that IX has to consist of two
parts, IX D (contains points along the Dirichlet boundary) and IX N (contains
the intersection points along the Neumann boundary). It is,

IX =

(
IX D

IX N

)

Each of structures IX D and IX N has to be ordered in such way that x-type
intersections come first and then come y-intersections.

In our example this would look as follows:

11



Nr Nr Nr
(IX) (IX D) (IX N) coord type anch n t

1. 1. – 0.275, 0.400 ‘x’ 4, 5 (-1, -1)/
√

2 (1, -1)/
√

2
2. 2. – 0.450, 0.300 ‘x’ 6, 4 (-1, 0) (0, -1)
3. 3. – 0.875, 0.300 ‘x’ 9, 4 (1, 0) (0, 1)

4. 4. – 0.850, 0.400 ‘x’ 9, 5 (1, 1)/
√

2 (-1, 1)/
√

2
5. 5. – 0.775, 0.500 ‘x’ 8, 6 (1, 0) (0, 1)

6. 6. – 0.300, 0.375 ‘y’ 4, 5 (-1, -1)/
√

2 (1, -1)/
√

2
7. 7. – 0.400, 0.350 ‘y’ 5, 5 (0, -1) (1, 0)
8. 8. – 0.500, 0.225 ‘y’ 6, 4 (0, -1) (1, 0)
9. 9. – 0.600, 0.225 ‘y’ 7, 4 (0, -1) (1, 0)
10. 10. – 0.700, 0.225 ‘y’ 8, 4 (0, -1) (1, 0)
11. 11. – 0.800, 0.225 ‘y’ 9, 4 (0, -1) (1, 0)

12. 12. – 0.800, 0.450 ‘y’ 9, 5 (1, 1)/
√

2 (-1, 1)/
√

2
13. 13. – 0.700, 0.525 ‘y’ 8, 6 (0, 1) (-1, 0)

14. 14. – 0.600, 0.550 ‘y’ 7, 6 (1, 1)/
√

2 (-1, 1)/
√

2

15. – 1. 0.175, 0.500 ‘x’ 3, 6 (-1, -1)/
√

2 (1, -1)/
√

2
16. – 2. 0.125, 0.600 ‘x’ 3, 7 (0, -1) (1, 0)
17. – 3. 0.125, 0.700 ‘x’ 3, 8 (0, -1) (1, 0)
18. – 4. 0.125, 0.800 ‘x’ 3, 9 (0, -1) (1, 0)

19. – 5. 0.525, 0.800 ‘x’ 6, 9 (1, 1)/
√

2 (-1, 1)/
√

2
20. – 6. 0.575, 0.700 ‘x’ 6, 8 (1, 0) (0, 1)
21. – 7. 0.575, 0.600 ‘x’ 6, 7 (1, 0) (0, 1)

22. – 8. 0.200, 0.475 ‘y’ 3, 6 (-1, -1)/
√

2 (1, -1)/
√

2
23. – 9. 0.200, 0.850 ‘y’ 3, 9 (0, 1) (-1, 0)
24. – 10. 0.300, 0.850 ‘y’ 4, 9 (0, 1) (-1, 0)
25. – 11. 0.400, 0.850 ‘y’ 5, 9 (0, 1) (-1, 0)

26. – 12. 0.500, 0.825 ‘y’ 6, 9 (1, 1)/
√

2 (-1, 1)/
√

2

References

[1] V. Rutka. Immersed Interface Methods for Elliptic Boundary Value Problems.
PhD thesis, TU Kaiserslautern, 2005.

[2] V. Rutka, A. Wiegmann, and H. Andrä. EJIIM for Calculation of Effective
Elastic Moduli in 3D Linear Elasticity. In preparation.

[3] J. A. Sethian and A. Wiegmann. Structural Boundary Design via Level
Set and Explicit Jump Immersed Interface Methods. J. Comput. Phys.,
163(2):489—528, 2000.

12



[4] A. Wiegmann. The Explicit–Jump Immersed Interface Method and Interface

Problems for Differential Equations. PhD thesis, University of Washington,
1998.

[5] A. Wiegmann and K. P. Bube. The Explicit-Jump Immersed Interface
Method: Finite Difference Methods for PDEs with Piecewise Smooth So-
lutions. SIAM J. Numer. Anal., 37(3):827—862, 2000.

13


