WS 2001/02

Dr. Th. Götz M.Sc. V. Rutka Dipl.-Math. Ch. Schick

Tutorial No. 3 Dynamical Systems: Theory and Numerics
Return: 12am, Thursday, 29.11. metal box: Rutka/Schick (48, ground floor)
You may work in groups of up to 3 people!

Exercise 9:

Consider the 2D-system (in polar coordinates)

$$\dot{r} = r(1-r)$$
 $\dot{\varphi} = \sin^2\left(\frac{\varphi}{2}\right)$.

- a) Determine the critical points.
- b) Compute the trajectories and draw the phase portrait (in x y-space!!!).
- c) Compute the ω -limitset for each trajectory.
- d) Show that the point (1,0) is not stable in the sense of Lyapunov.

Exercise 10:

Compute the Poincaré map for

$$\dot{x} = \mu x + y - x\sqrt{x^2 + y^2}$$

$$\dot{y} = -x + \mu y - y\sqrt{x^2 + y^2}$$

and the transversal $L := \{(x, y) : x > 0, y = 0\}$. What is the limit cycle?

Exercise 11:

Show that for van der Pol's equation

$$\ddot{x} + x = \varepsilon (1 - x^2) \dot{x}, \quad \varepsilon > 0,$$

a limit cycle exists. Hint: Poincaré-Bendixson.

Exercise 12:

Consider $\dot{x} = f(x), \ x \in \mathbb{R}$ and a domain $D(0) \subseteq \mathbb{R}^n$ with a volume v(0). The flow φ of the ODE defines

$$D(t) := \varphi(t, D(0)) = \{ \varphi(t; x_0) : x_0 \in D(0) \}.$$

a) Show that for the volume v(t) of D(t) the following holds:

$$\left. \frac{\mathrm{d}v}{\mathrm{d}t} \right|_{t=0} = \int\limits_{D(0)} \mathrm{div} f \mathrm{d}x.$$

Hint: $v(t) = \int_{D(0)} \det \left| \frac{\partial \varphi(t,x)}{\partial x} \right| dx$.

b) Liouville's Theorem

Consider a time-independent Hamiltonian system

$$\dot{q}_i = rac{\partial \mathcal{H}}{\partial p_i}, \qquad \qquad \dot{p}_i = -rac{\partial \mathcal{H}}{\partial q_i}$$

where $\mathcal{H}(q_1(t), p_1(t), \dots, q_n(t), p_n(t)) = \text{const}$ is the Hamiltonian. Show that $\frac{\mathrm{d}v}{\mathrm{d}t}|_{t=0} = 0$, i.e. Hamiltonian flows are volume preserving.