WS 2001/02

Dr. Th. Götz M.Sc. V. Rutka Dipl.-Math. Ch. Schick

Tutorial No. 5 Dynamical Systems: Theory and Numerics
Return: 12am, Thursday, 13.12. metal box: Rutka/Schick (48, ground floor)

Exercise 17: (Discrete Gronwall Lemma)

Show the following: Let (p_n) , (q_n) and (e_n) be positive sequences. If (e_n) satisfies the recursion

$$e_{n+1} \le (1+q_n)e_n + p_n$$

for n < N, then

$$e_n \le \left(e_0 + \sum_{j=0}^{n-1} p_j\right) \exp\left(\sum_{j=0}^{n-1} q_j\right)$$

for n < N. (Hint: Induction)

Exercise 18:

Consider $\dot{x} = f(t, x)$, $x(t_0) = x_0$, f L-continuous with Lipschitz-constant L. Given two numerical initial values u_0 , v_0 and a grid T_h . Consider the Euler polygons u, v (according to the respective initial values) and show the estimate

$$|v_i - u_i| \le |v_0 - u_0|e^{|t_i - t_0|L}.$$

(Hint: Use Ex. 17)

Exercise 19:

- a) Show that Euler's method is consistent of order 1.
- b) Determine the consistency order of the improved Euler given by

$$\psi(t, u; h) = f\left(t + \frac{h}{2}, u + \frac{h}{2}f(t, u)\right).$$

Exercise 20: (Programming exercise)

a) i) Solve

$$\dot{x} = t^4 x + t^4 x^4, \quad x(0) = \frac{1}{2}$$

using the Euler method and the improved Euler method on a uniform grid with various stepsizes for $t \in [0, 1]$.

- ii) Plot and compare the solution with the analytic solution (Ex. 1, Tut. 1).
- iii) Plot $\ln |e_h|$ versus $\ln |h|$, where h is the stepsize and e_h the error in the maximum-norm for this stepsize. What can you state about the order of convergence?
- iv) Compare the computational effort (number of flops or runtime) for the two schemes to obtain the solution up to a given tolerance.
- b) i) Solve the equation for the mathematical pendulum

$$\ddot{x} + \sin x = 0$$

using the Euler and the improved Euler method for $t \in [0, 40\pi]$ and a stepsize of your choice. Use the initial values $x(0) = \frac{\pi}{4}, \frac{\pi}{2}, \frac{3\pi}{4}$ and $\dot{x}(0) = 0$.

- ii) Plot the solutions in phase space.
- iii) Monitor the Hamiltonian \mathcal{H} (see Ex. 7, Tut. 2).
- iv) Compute numerically the oscillation period and compare to the analytic result.