Mathematische Optimierung kann helfen!

Stefan Volkwein

Fachbereich Mathematik und Statistik, Universität Konstanz

Antrittsvorlesung, 17. Juli 2010 Lange Nacht der Wissenschaften

・ 同 ト ・ ヨ ト ・ ヨ ト

Beitrag der Mathematischen Optimierung im interdisziplinären Team

Anwendung

↓ Modellierung

mathematisches Modell

 \Downarrow Math. Opt.

optimales Design

 \Downarrow Validierung

Anwendung

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Beitrag der Mathematischen Optimierung im interdisziplinären Team

・ロト ・回ト ・ヨト ・ヨト

Э

Eine Minimierungsaufgabe

Aufgabe: min $\{f(x) : -\infty < x < \infty\}$ Bedingung: $f'(x_1^*) \stackrel{!}{=} 0$ mit f'(x) = 2xLösung: $x_1^* = 0$

・ロン ・回 と ・ 回 と ・ 回 と

Eine Minimierungsaufgabe mit Nebenbedingungen

Aufgabe: min $\{f(x) : -\infty < x < \infty\}$ Bedingung: $f'(x_1^*) \stackrel{!}{=} 0$ mit f'(x) = 2xLösung: $x_1^* = 0$

Aufgabe: min
$$\{f(x) : 1 \le x \le 3\}$$

Bedingung: $\begin{pmatrix} f'(x_2^*) + \mu_b^* - \mu_a^* \\ \mu_a^*(1 - x_2^*) \\ \mu_b^*(x_2^* - 3) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$
Lösung: $x_2^* = 1, \ \mu_a^* = 2, \ \mu_b^* = 0$

Beispiel 1

Parameteridentifikation bei der Hyperthermie

Kooperation mit Dr. M. Weiser (Zuse Institut Berlin) und Charité

・ 同 ト ・ ヨ ト ・ ヨ ト

Parameteridentifikation bei der Hyperthermie — 1

< 口 > < 回 > < 回 > < 回 > < 回 > <

Parameteridentifikation bei der Hyperthermie — 2

Modell: Differentialgleichung

(*)
$$-\operatorname{div}(\kappa(x)\nabla u(x)) + c(x)w(x)(u(x) - u_a) = f(x)$$

mit Leitfähigkeit κ , Absorptionsrate f, spezifischer Wärme c, Körpertemperatur u und konstanter systemischer Temperatur $u_a = 37^{\circ}$ C

Ziel

Identifikation der Perfusion aus Messwerten für Temperatur und Perfusion

Mathematische Optimierung

Minimiere Modell-Messung durch Wahl von w in (*)

イロン イヨン イヨン イヨン

Parameteridentifikation bei der Hyperthermie — 3

Numerische Lösungsstrategie

- eigens entwickeltes, effizientes Optimierungsverfahren (SQP)
- passende Approximation des Modells

イロト イポト イヨト イヨト

Beispiel 2

Optimales Design beim Laseroberflächenhärten

Kooperation mit Prof. D. Hömberg (TU Berlin und WIAS Berlin)

・ 同下 ・ ヨト ・ ヨト

Optimales Design beim Laseroberflächenhärten — 1

• Vorgehen:

• Phasenübergänge im Stahl:

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Optimales Design beim Laseroberflächenhärten — 2

Problem in der Praxis

Optimales Design der Laserintensität

Foto vom WIAS

・ロン ・四マ ・ヨマ ・ロマ

Optimales Design beim Laseroberflächenhärten — 3

- Dimension: zwei/drei Raum- und eine Zeitdimension t
- Wärmeleitung für die Temperatur θ : $\theta_t \Delta \theta = \alpha u \beta a_t$
- Phasenübergang beim Austenit: $a_t = f(\theta, a)$
- Laserintensität: u = u(t)
- Ziel: $a|_{t=T} \approx a_d$ und $\theta < \theta_{melt}$

イロト イポト イヨト イヨト

3

Optimales Design beim Laseroberflächenhärten — 4

Beispiel 3

Segmentierung von Zellrändern

Kooperation mit Dr. K. Bredies (U Graz), Jun.-Prof. D. Merhof und T. Treskatis (U Konstanz, INCIDE)

・ 同下 ・ ヨト ・ ヨト

Segmentierung von Zellrändern — 1

Metabolismus der Hefe Saccharomyces cerevisiae

- 2D-Durchlichtmikroskopie
 → Zellbegrenzungen (nicht invasiv)
- Ziel: zellbasierte quantitative Analyse
- Dazu: Detektion der Zellgrenzen

Batterie

Segmentierung von Zellrändern — 2

• Standard-Modell: helligkeits- und differenzbasierte Randdetektion

• Snake-Modell: Zellränder durch numerische Optimierung

$$\min_{\gamma} \int_{S^1} G(\gamma(t)) + \alpha \, |\gamma'(t)|^2 \, \mathrm{d}t - \left(\frac{\beta}{2} \int_{S^1} \gamma(t) \cdot \gamma'(t)^{\perp} \, \mathrm{d}t\right)^p$$

Beispiel 4

Herz-Kreislaufsystem

Kooperation mit Prof. F. Kappel (U Graz) und Dr. M. Mutsaers (TU Eindhoven)

- 4 回 2 - 4 □ 2 - 4 □

Herz-Kreislaufsystem — 1

- Pas arterieller System-Blutdruck
- Pvs venöser System-Blutdruck
- *P_{ap}* arterieller Lungen-Blutdruck
- *Pvp* venöser Lungen-Blutdruck
- R_s Widerstand Systemkreislauf (Arbeit)
- R_p Widerstand Lungenkreislauf
- S₁ Kontraktibilität der linken Ventrikel
- S_r Kontraktibilität der rechten Ventrikel

・ 同 ト ・ ヨ ト ・ ヨ ト

э

• H Herzrate

Herz-Kreislaufsystem — 2

- Zustand: $x = (P_{as}, P_{vs}, P_{ap}, P_{vp}, S_l, \dot{S}_l, S_r, \dot{S}_r, R_s, H) : [0, T] \rightarrow \mathbb{R}^{10}$
- Nichtlineares dynamisches System:

 $\dot{x}(t) = F(x(t), u(t))$ für $t \in (0, T)$ und $x(0) = x_0$

mit stetig-differenzierbarem F

- Steuermechanismus: $\dot{H}(t) = u(t)$
- Messungen: $P_{as}(t)$
- Optimierung:

 $\min_{x,u} J(x,u) = \int_{0}^{T} (P_{as}(t) - P_{as}^{d})^{2} + \kappa u(t)^{2} dt + (P_{as}(T) - P_{as}^{d})^{2}$

u.d.N. $u_a \leq u \leq u_b$ in [0, T] und

 $\dot{x}(t) = F(x(t), u(t))$ für $t \in (0, T)$ und $x(0) = x_0$

Herz-Kreislaufsystem — 3

イロン イヨン イヨン イヨン

æ

Werkzeug bei komplexen Problemen

Modellreduktion

Kooperation mit Prof. M. Hinze (U Hamburg), Prof. K. Kunisch (U Graz), Prof. K. Urban (U UIm)

向下 イヨト イヨト

0,5% der Matrixbasis -> 45% Information

◆□ → ◆□ → ◆ □ → ◆ □ → ●

æ

イロン イヨン イヨン イヨン

10% der Matrixbasis -> 85% Information

イロン 不同 とくほど 不良 とうほ

イロン イロン イヨン イヨン 三日

$$\begin{split} u_t + uu_x + vu_y + p_x &= \nu \Delta u & \text{ in } Q = (0, T) \times \Omega \\ v_t + uv_x + vv_y + p_y &= \nu \Delta v & \text{ in } Q \\ u_x + v_y &= 0 & \text{ in } Q \end{split}$$

- Navier-Stokes Gleichung
- 3 \times 4804 Freiheitsgrade
- Integration mit 20 Zeitschritten
- Snapshots span $\{u(t_1), ..., u(t_{21})\}$

und span $\{v(t_1), ..., v(t_{21})\}$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

Time=3 Surface: velocity field (u)

Stefan Volkwein Mathematische Optimierung kann helfen!

• Ohne Optimierung (5 · 10⁷ Freiheitgrade):

• Basisfunktionen: ψ_1 , ψ_2 , ψ_3 und ψ_4

• Ziel: Mittelwert der Strömung

• Startwert des Optimierers

• Optimale Strömung

Stefan Volkwein Mathematische Optimierung kann helfen!

э

Lange Nacht der Wissenschaften: Die Zukunft der Energie

Lithium-Ionen Batterie

- Numerical and analytical methods for elliptic-parabolic systems appearing in the modeling of lithium-ion batteries, Exzellenzinitiative U Konstanz (Denk/Lass/Seger/V.)
- Prognosesicheres Batteriemodell für Elektro- und Hybridfahrzeuge mit dem ViF in Graz, Österreich (Lass/V.)
- Methodenentwicklung zur Optimierung von Batteriemodellen unter Verwendung von Modellreduktion und Space-Mapping-Techniken mit dem ViF in Graz, Österreich (Mancini/V.)

・ 同 ト ・ ヨ ト ・ ヨ ト

Lithium-Ionen-Batterie

Modell [Wu et al.]:

$$-\nabla \cdot (\kappa(c)\nabla \Phi_{e}) - S_{e}(\Phi_{s} - \Phi_{e}, c) = 0$$
$$-\nabla \cdot (\sigma \nabla \Phi_{s}) + S_{e}(\Phi_{s} - \Phi_{e}, c) + f = 0$$
$$(\varepsilon_{e}c)_{t} - \nabla \cdot (D\nabla c) = S_{c}(\Phi_{s} - \Phi_{e}, c)$$

Variablen:

elektr. Potential Φ_e (Electrolyt-Phase) elektr. Potential Φ_s (Fest-Phase) Lithium-Ionen Konzentration c (Elektrolyt)

A (1) > A (2) > A

→

э

Vielen Dank!

Weitere Informationen im Internet

SFB: www.math.uni-graz.at/mobis
Das Virtuelle Fahrzeug: www.vif.tugraz.at
V.: www.math.uni-konstanz.de/numerik/personen/volkwein

▲同 ▶ ▲ 臣 ▶

∃ >