

Proper Orthogonal Decomposition (POD) for Nonlinear Systems

Stefan Volkwein

Institute for Mathematics and Scientific Computing University of Graz, Austria

PhD program in Mathematics for Technology Catania, May 21, 2007
 Motivation
 Outline
 Introduction
 Balanced truncation
 Reduced-basis method
 POD
 ROM

 Motivation 1: Parameter identification

 </

• Model equations:

$$-\operatorname{div}(c\nabla u) + \beta \cdot \nabla u + au = f \qquad \text{in } \Omega \subset \mathbb{R}^d$$

$$c \frac{\partial u}{\partial n} + qu = g_N \qquad \text{on } \Gamma_N \subset \Gamma = \partial \Omega \quad (*)$$

$$u = g_D \qquad \text{on } \Gamma_D = \Gamma \setminus \Gamma_N$$

- Problem: estimate parameters (e.g., c, β or a) in (*) from given (perturbed) measurements u_d for the solution u on (parts of) Γ
- Mathematical formulation: $(\infty$ -dim.) optimization problem

$$\min \int_{\Gamma} \alpha |u - u_d|^2 \, \mathrm{d}s + \kappa \, \|p\|^2 \quad \text{s.t.} \quad (p, u) \text{ solves (*) and } p \in P_{\mathrm{ad}}$$

s.t. - subject to

• Numerical strategy: combine optimization methods with fast (local) rate of convergence and POD model reduction for the PDEs

> < 프 > < 프 > · · 프

• Model problem:

$$\min \frac{1}{2} \int_{\Omega} |y(T) - y_{T}|^{2} dx + \frac{\kappa}{2} \int_{0}^{T} \int_{\Gamma} |u|^{2} dx dt$$

s.t.
$$\begin{cases} y_{t} - \Delta y + f(y) = 0 & \text{in } Q = (0, T) \times \Omega \\ y|_{\Gamma} = u & \text{on } \Sigma = (0, T) \times \Gamma \\ y(0) = y_{\circ} & \text{on } \Omega \subset \mathbb{R}^{d} \end{cases}$$

• Adjoint system:

$$-p_t - \Delta p + f'(y)^* p = 0, \quad p|_{\Gamma} = 0, \quad p(T) = y_T - y(T)$$

- Optimizer: second-order algorithms like SQP or Newton methods
- Challenge: large-scale ↔ fast/real-time optimizer

▲ 문 ▶ | ▲ 문 ▶

 Motivation
 Outline
 Introduction
 Balanced truncation
 Reduced-basis method
 POD
 ROM

 Motivation 3:
 Closed-loop control for time-dependent PDEs
 Closed-loop
 Control for time-dependent PDEs
 Closed-loop
 Closed-lop

• Open-loop control:

$$\begin{array}{c} \text{input } u(t) \rightarrow \\ \begin{array}{c} \dot{x}(t) = f(t, x(t), u(t)) \\ x(0) = x_o \in \mathbb{R}^{\ell} \\ \text{(after spatial discretization)} \end{array}$$

 \rightarrow output y(t) = Cx(t) + Du(t)

< 注→ < 注→ -

• Closed-loop control: determine \mathcal{F} with

$$u(t) = \mathcal{F}(t, y(t))$$
 (feedback law)

- Linear case: LQR and LQG design
- Nonlinear case: Hamilton-Jacobi-Bellman equation

$$v_t(t, y_\circ) + H(v_y(t, y_\circ), y_\circ) = 0$$
 in $(0, T) imes \mathbb{R}^d$

• Strategy: *l*-dim. spatial approximation by POD model reduction

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Outline						

- Introduction to model reduction
- Balanced truncation method
- Reduced-basis method
- Proper orthogonal decomposition (POD)
 - Burgers equation
 - Navier-Stokes equations
 - energy transport
- Reduced-order modeling (ROM)
 - heat flow
 - λ - ω systems

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Introdu	ction					

• Linear system (state-space):

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t \ge 0, \quad x(0) = x_c$$

 $y(t) = Cx(t) + Du(t)$

 $x(t) \in \mathbb{R}^n$ state, $u(t) \in \mathbb{R}^m$ control, $y(t) \in \mathbb{R}^p$ output/measurement

• Laplace transform: $x \mapsto \int_0^\infty e^{-st} x(t) dt$

$$sx(s) - x(0) = Ax(s) + Bu(s)$$
$$y(s) = Cx(s) + Du(s)$$

 $\Rightarrow y(s) = \left(C(sI - A)^{-1}B + D\right)u(s) + C(sI - A)^{-1}x_{\circ}$

• Transfer function for $x_{\circ} = 0$: $u(s) \mapsto y(s) = G(s)u(s)$ with

$$G(s) = C(sI - A)^{-1}B + D$$

御 と く ヨ と く ヨ と …

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Reduced-c	order mod	lel (ROM)				

• Transfer function for $x_{\circ} = 0$: $u(s) \mapsto y(s) = G(s)u(s)$ with

$$G(s) = C(sI - A)^{-1}B + D$$

• Reduced-order model (ROM) of order $\ell \ll n$:

 $y^{\ell}(s) = G_{\ell}(s)u(s)$ with $G_{\ell}(s) = C_{\ell}(sI - A_{\ell})^{-1}B_{\ell} + D$

• Error bound: y(s) = G(s)u(s) und $y^{\ell}(s) = G_{\ell}(s)u(s)$

$$\Rightarrow \qquad \|y-y^\ell\| \le \|G-G_\ell\| \|u\|$$

• Goal of model reduction: ROM with $||G - G_{\ell}|| < \text{tol}$

・ 回 ト ・ ヨ ト ・ ヨ ト

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Methods						

- Linear dynamical systems:
 - balanced truncation
 - moment matching
- Nonlinear dynamical systems:
 - linearize and balanced truncation/moment matching
 - reduced-basis method
 - proper orthogonal decomposition (POD)
- Extension: find $x \in \mathbb{R}^n$ solving

$$F(x; \mu) = 0$$
 in \mathbb{R}^n

or

$$\dot{x}(t) + F(x(t); \mu) = 0$$
 in \mathbb{R}^n

with parameter $\mu \in \mathcal{D} \subset \mathbb{R}^k$

• Linear system:

$$\dot{x}(t) = Ax(t) + Bu(t), \quad t \ge 0, \quad x(0) = x_{\circ}$$

 $y(t) = Cx(t) + Du(t)$ (*)

 $x(t) \in \mathbb{R}^n$ state, $u(t) \in \mathbb{R}^m$ control, $y(t) \in \mathbb{R}^p$ output/measurement

• Transformation of the state space: $x \mapsto x = Tx$, multiply (*) by T

$$\begin{split} \dot{\mathbf{x}}(t) &= \mathcal{T}A\mathcal{T}^{-1}\mathbf{x}(t) + \mathcal{T}Bu(t), \quad t \geq 0, \quad \mathbf{x}(0) = \mathcal{T}x_{\mathrm{o}} \\ y(t) &= \mathcal{C}\mathcal{T}^{-1}\mathbf{x}(t) + Du(t) \end{split}$$

• Transformed matrices:

$$(A, B, C, D) \mapsto (\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}) = (\mathcal{T}A\mathcal{T}^{-1}, \mathcal{T}B, C\mathcal{T}^{-1}, D)$$

• Balanced realization: utilize appropriate T

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Balanced i	realization					

- \bullet Balanced realization: find appropriate ${\cal T}$
- Controllability: (A, B) controllable \Leftrightarrow

for any x_{o} , x_{T} there exists u(t) such that $\begin{cases} \dot{x}(t) = Ax(t) + Bu(t) \\ x(0) = x_{o} \\ x(T) = x_{T} \end{cases}$

 $\Leftrightarrow AW_c + W_c A^T + BB^T = 0$ (Lyapunov eq.), W_c positive definite

- $W_c = \text{controllability Gramian}$
- Observability: (A, C) observable \Leftrightarrow

u(t), y(t) known $\Rightarrow x(0) = x_{\circ}$ computable

 $\Leftrightarrow A^T W_o + W_o A + C^T C = 0$ (Lyapunov eq.), W_o positive definite

• $W_o =$ observability Gramian

- 4 回 ト 4 ヨ ト 4 ヨ ト

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Hankel sin	gular valu	es				

- Balancing: state space transformation
 - \rightarrow components ordered w.r.t. decay controllability & observability
- Observability Gramian W_o : $A^T W_o + W_o A + C^T C = 0$
- Controllability Gramian W_c : $AW_c + W_cA^T + BB^T = 0$
- Balancing: find T satisfying

$$\mathcal{W}_{c} = \mathcal{W}_{o} = \begin{pmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \end{pmatrix} \qquad \begin{array}{c} (\mathcal{A}, \mathcal{B}, \mathcal{C}) = (\mathcal{T}\mathcal{A}\mathcal{T}^{-1}, \mathcal{T}\mathcal{B}, \mathcal{C}\mathcal{T}^{-1}) \\ \mathcal{A}^{T}\mathcal{W}_{o} + \mathcal{W}_{o}\mathcal{A} + \mathcal{C}^{T}\mathcal{C} = 0 \\ \mathcal{A}\mathcal{W}_{c} + \mathcal{W}_{c}\mathcal{A}^{T} + \mathcal{B}\mathcal{B}^{T} = 0 \end{array}$$

- Hankel singular values: $\sigma_1 \geq \ldots \geq \sigma_n \geq 0$
- Balanced Realization: transformation

$$(A, B, C, D) \mapsto (TAT^{-1}, TB, CT^{-1}, D)$$

- 4 E M 4 E M

• Hankel singular values:

 $\sigma_i \ll 1 \Rightarrow i$ -th component of $\mathrm{x}(t) = \mathcal{T} \mathrm{x}(t)$ small influence

- Truncation: $\mathcal{T} x \approx \mathcal{T}_{\ell} x^{\ell}$, $\mathcal{T}_{\ell} = [\mathcal{T}_{1\ell}, \dots, \mathcal{T}_{\ell\ell}]$ with $\sigma_{\ell+1} \ll \text{tol}$
- ROM of order $\ell \ll n$: $x^{\ell}(t) \in \mathbb{R}^{\ell}$

$$egin{aligned} \dot{x}^\ell(t) &= A_\ell x(t) + B_\ell u(t), \quad t \geq 0, \quad x^\ell(0) = \mathcal{T}_\ell x_0, \ y(t) &= C_\ell x^\ell(t) + D u(t) \end{aligned}$$

with $A_{\ell} = T_{1:\ell,1:n} A T_{1:n,1:\ell}^{-1}$, $B_{\ell} = T_{1:\ell,1:n} B$, $C_{\ell} = C T_{1:n,1:\ell}^{-1}$

• Error bound:

$$\|G - G_{\ell}\| \le 2 \sum_{i=\ell+1}^{n} \sigma_{i} \quad \text{with} \quad G_{\ell} = C_{\ell} (sI - A_{\ell})^{-1} B_{\ell} + D$$
$$\Rightarrow \|y - y^{\ell}\| \le 2 \|u\| \sum_{i=\ell+1}^{n} \sigma_{i}$$

イロト イポト イヨト イヨト

• Descriptor systems:

$$E\dot{x}(t) = Ax(t) + Bu(t), \quad t > 0, \quad x(0) = x_{c}$$

 $y(t) = Cx(t) + Du(t)$

- \rightarrow Multi body systems
- \rightarrow semi-discretized PDEs
- Time-dependent matrices:

$$x_{k+1} = A_k x_k + B_k u_k, \quad k \ge 0, \quad x_0 = x_o$$
$$y_k = C_k x_k + D_k u_k$$

• Systems of 2nd order: structure preserving

$$\begin{aligned} M\ddot{x}(t) + D\dot{x}(t) + Sx(t) &= Bu(t), \quad t > 0\\ y(t) &= Cx(t) \end{aligned}$$

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Matlab C	Control Sy	stem Toolbo	x			

- Routine lyap: solver for Lyapunov equation $A^T X + XA + Q = 0$
- Routine balreal: balanced realization
- Routine minreal: minimal realization
- Routine modred: ROM computation

Advantages/disadvantages of balanced truncation

- Advantages:
 - including system properties
 - explicit error bounds
 - algorithms available
 - applications for sparse matrices
- Disadvantages:
 - only linear systems
 - increasing CPU due to linearization & time-dependent matrices
- Literature:
 - K. Zhou, J.C. Doyle, K. Glover: *Robust and Optimal Control*, Prentice Hall, New Jersey 07458, 1996
 - P. Benner, V. Mehrmann, D.C. Sorensen (eds.): Dimension Reduction of Large-Scale Systems, Lecture Notes in Computational Science and Engineering, Vol. 45, Springer-Verlag, 2005

• Linear model problem:

$$-\Delta u + \mu u = f$$
 in $\Omega \subset R^3$, $u = 0$ on Γ , $\mathfrak{D} = [0, \mu_{\max}]$

• Discretisation:

$$(A + \mu I) u^h = F \tag{(*)}$$

- Grid in \mathcal{D} : $0 = \mu_1 < \mu_2 < \ldots < \mu_\ell = \mu_{\max}$
- Reduced-order space:

$$\mathcal{V}_{\ell} = \left\{ u^{\ell} = \sum_{i=1}^{\ell} c_i u^{h}(\mu_i) \, \Big| \, c_i \in \mathbb{R}, \, u^{h}(\mu_i) \text{ solves } (*) \text{ for } \mu = \mu_i \right\}$$

• ROM of order ℓ : $u^{\ell} \in \mathcal{V}^{\ell}$ satisfying

$$\left(V_{\ell}^{\mathsf{T}}\mathsf{A}V_{\ell}+\mu V_{\ell}^{\mathsf{T}}V_{\ell}\right)u^{\ell}=V_{\ell}^{\mathsf{T}}\mathsf{F}, \quad V_{\ell}=\left[u^{h}(\mu_{1}),\ldots,u^{h}(\mu_{\ell})\right]$$

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM			
Frror bounds and extensions									

• Error: ℓ sufficiently large and certain μ_i 's

 $\|u^h(\mu)-u^\ell(\mu)\|\leq \sqrt{1+c_1\mu_{\max}}\,\|u^h(0)\|\,e^{-c_2\ell/2}\quad\text{for all }\mu\in\mathcal{D}$

• Extensions:

•
$$\mathfrak{D} \subset \mathbb{R}^k$$
 with $k > 1$

• certain nonlinear problems

$$-\Delta u + g(u;\mu) = h(\mu)$$
 in $\Omega \subset \mathbb{R}^3$

• time-dependent problems

$$u_t - \Delta u + g(u; \mu) = h(\mu)$$
 in $(0, T) \times \Omega \subset \mathbb{R}^3$

 \rightarrow interpolation in $\tilde{\mathcal{D}} = \mathcal{D} \times [0, T]$

• Advantages:

- reduction based on simulation (data driven)
- nonlinear problems
- parameter- and time-dependent problems
- $\bullet\,$ error bounds for specific interpolation in ${\mathcal D}$
- Disadvantages:
 - not structure preserving
 - no system theoretical results
 - costly interpolation for k > 1

• Literature:

M.A. Grepl, Y. Maday, N.C. Nguyen, A.T. Patera: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations, to appear in *Mathematical Modelling* and Numerical Analysis (M^2AN)

- Given: $y_1, \ldots, y_n \in \mathbb{R}^m$; set $\mathcal{V} = \operatorname{span} \{y_1, \ldots, y_n\} \subset \mathbb{R}^m$
- Goal: Find $\ell \leq \dim \mathcal{V}$ orthonormal vectors $\{\psi_i\}_{i=1}^{\ell}$ in \mathbb{R}^m minimizing

$$J(\psi_1,\ldots,\psi_\ell) = \sum_{j=1}^n \left\| y_j - \sum_{i=1}^\ell \left(y_j^T \psi_i \right) \psi_i \right\|^2 \longrightarrow \min \{ f_j \in \mathcal{F}_j \}$$

with the Euclidean norm $||y|| = \sqrt{y^T y}$

• Constrained optimization:

min
$$J(\psi_1, \ldots, \psi_\ell)$$
 subject to $\psi_i^{\mathsf{T}} \psi_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$

イロト イポト イヨト イヨト

• Lagrange functional:

$$L(\psi_1,\ldots,\psi_\ell,\lambda_{11},\ldots,\lambda_{\ell\ell})=J(\psi_1,\ldots,\psi_\ell)+\sum_{i,j=1}^\ell\lambda_{ij}(\psi_i^{\mathsf{T}}\psi_j-\delta_{ij})$$

with the Kronecker symbol $\delta_{ij} = 1$ for i = j and $\delta_{ij} = 0$ otherwise • Optimality conditions:

$$\frac{\partial L}{\partial \psi_i}(\psi_1, \dots, \psi_\ell, \lambda_{11}, \dots, \lambda_{\ell\ell}) = \mathbf{0} \in \mathbb{R}^m \quad \text{ for } i = 1, \dots, \ell$$
$$\frac{\partial L}{\partial \lambda_{ij}}(\psi_1, \dots, \psi_\ell, \lambda_{11}, \dots, \lambda_{\ell\ell}) = \mathbf{0} \in \mathbb{R} \quad \text{ for } i, j = 1, \dots, \ell$$

Necessary optimality conditions (Part 2)

•
$$L(\psi_1,\ldots,\psi_\ell,\lambda_{11},\ldots,\lambda_{\ell\ell}) = J(\psi_1,\ldots,\psi_\ell) + \sum_{i,j=1}^{\ell} \lambda_{ij} (\psi_i^T \psi_j - \delta_{ij})$$

•
$$\frac{\partial L}{\partial \psi_i} = 0 \quad \Leftrightarrow \quad \sum_{j=1}^n y_j(y_j^T \psi_i) = \lambda_{ii} \psi_i \text{ and } \lambda_{ij} = 0 \text{ for } i \neq j$$

•
$$\frac{\partial L}{\partial \lambda_{ij}} = 0 \quad \Leftrightarrow \quad \psi_i^T \psi_j = \delta_{ij}$$

• Setting $\lambda_i = \lambda_{ii}$ and $Y = [y_1, \dots, y_n] \in \mathbb{R}^{m \times n}$ we have

$$YY^T\psi_i = \lambda_i\psi_i$$
 for $i = 1, \dots, \ell$

i.e., necessary optimality conditions are given by a symmetric $m \times m$ eigenvalue problem

• Here: necessary optimality conditions are already sufficient.

・ロン ・回と ・ヨン・

Motivation Outline Introduction Balanced truncation Reduced-basis method POD ROM Computation of the POD basis (Part 1) Formation Formation

- Optimality conditions: $YY^T\psi_i = \lambda_i\psi_i$ for $i = 1, ..., \ell$
- Solution by SVD for $Y \in \mathbb{R}^{m \times n}$: $d = \operatorname{rank} Y$, $\sigma_1 \ge \ldots \ge \sigma_d > 0$, $U = [u_1, \ldots, u_m] \in \mathbb{R}^{m \times m}$ und $V = [v_1, \ldots, v_n] \in \mathbb{R}^{n \times n}$ orthogonal with

$$U^{T}YV = \begin{pmatrix} D & 0 \\ 0 & 0 \end{pmatrix} = \Sigma \in \mathbb{R}^{m \times n}$$

where $D = \text{diag} (\sigma_1, \dots, \sigma_d) \in \mathbb{R}^{d \times d}$. Moreover, for $1 \le i \le d$

$$\mathbf{Y}\mathbf{v}_i = \sigma_i \mathbf{u}_i, \ \mathbf{Y}^{\mathsf{T}} \mathbf{u}_i = \sigma_i \mathbf{v}_i, \ \mathbf{Y}\mathbf{Y}^{\mathsf{T}} \mathbf{u}_i = \sigma_i^2 \mathbf{u}_i, \ \mathbf{Y}^{\mathsf{T}} \mathbf{Y} \mathbf{v}_i = \sigma_i^2 \mathbf{v}_i$$

• POD basis: $\psi_i = u_i$ and $\lambda_i = \sigma_i^2 > 0$ for $i = 1, \dots, \ell \le d = \dim \mathcal{V}$

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Motivation Outline Introduction Balanced truncation Reduced-basis method POD ROM Computation of the POD basis (Part 2) Entroduction Entroduct

- Data ensemble: $\mathcal{V} = \text{span} \{y_1, \dots, y_n\} \subset \mathbb{R}^m$ and $d = \dim \mathcal{V}$ POD basis of rank ℓ : $\psi_i = u_i$ and $\lambda_i = \sigma_i^2 > 0$ for $i = 1, \dots, \ell \leq d$
- Three choices to compute the ψ_i 's SVD for $Y \in \mathbb{R}^{m \times n}$: $Yv_i = \sigma_i u_i$ EVD for $YY^T \in \mathbb{R}^{m \times m}$: $YY^T u_i = \sigma_i^2 u_i$ (if $m \ll n$) EVD for $Y^T Y \in \mathbb{R}^{n \times n}$: $Y^T Yv_i = \sigma_i^2 v_i$ and $u_i = \frac{1}{\sigma_i} Yv_i$ (if $m \gg n$)
- Error formula for the POD basis of rank ℓ :

$$J(\psi_1,\ldots,\psi_\ell) = \sum_{j=1}^n \left\| y_j - \sum_{i=1}^\ell \left(y_j^T \psi_i \right) \psi_i \right\|^2 = \sum_{i=\ell+1}^d \lambda_i$$

イロト イポト イヨト イヨト

Motivation Outline Introduction Balanced truncation Reduced-basis method POD ROM Computation of the POD basis (Part 3)

• Error formula for the POD basis of rank ℓ :

$$J(\psi_1,\ldots,\psi_\ell) = \sum_{j=1}^n \left\| y_j - \sum_{i=1}^\ell \left(y_j^T \psi_i \right) \psi_i \right\|^2 = \sum_{i=\ell+1}^d \lambda_i$$

•
$$YY^T\psi_i = \lambda_i\psi_i$$
, $1 \le i \le \ell$, and $YY^T\psi_i = \sum_{j=1}^n (y_j^T\psi_j)y_j$ give

$$\lambda_i = \lambda_i \psi_i^T \psi_i = \left(YY^T \psi_i\right)^T \psi_i = \left(\sum_{j=1}^n \left(y_j^T \psi_i\right) y_j\right)^T \psi_i = \sum_{j=1}^n \left|y_j^T \psi_i\right|^2$$

•
$$y_j = \sum_{i=1}^{d} (y_j^T \psi_i) \psi_i, j = 1, ..., m$$
, and $\psi_i^T \psi_j = \delta_{ij}$ imply
$$\sum_{j=1}^{n} \left\| y_j - \sum_{i=1}^{\ell} (y_j^T \psi_i) \psi_i \right\|^2 = \sum_{j=1}^{n} \sum_{i=\ell+1}^{d} |y_j^T \psi_i|^2 = \sum_{i=\ell+1}^{d} \lambda_i$$

・ロト ・回ト ・ヨト ・ヨト

æ

• Uncorrelated POD coefficients:

$$\sum_{j=1}^{n} \alpha_{j} \langle y_{j}, \psi_{i} \rangle \langle y_{j}, \psi_{k} \rangle = \delta_{ik} \lambda_{i}$$

• Optimality of the POD basis:

$$\sum_{i=1}^{\ell} \sum_{j=1}^{n} \alpha_{j} |\langle y_{j}, \psi_{i} \rangle|^{2} \geq \sum_{i=1}^{\ell} \sum_{j=1}^{n} \alpha_{j} |\langle y_{j}, \chi_{i} \rangle|^{2}$$

where $\{\chi_i\}_{i=1}^\ell$ orthonormal with respect to $\langle \cdot \, , \cdot \rangle$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

• Nonlinear dynamical system:

$$\dot{y}(t)=f(t,y(t)) ext{ for } t\in(0,T) ext{ and } y(0)=y_\circ$$

with continuous f and given y_{\circ}

- Time grid: $0 \le t_1 < t_2 < \ldots t_n \le T$, $\delta t_j = t_j t_{j-1}$ for $2 \le j \le n$
- Available or known snapshots: $y_j = y(t_j), \ 1 \le j \le n$
- Snapshot ensemble: $\mathcal{V} = \operatorname{span} \{y_1, \ldots, y_n\}, d = \dim \mathcal{V} \le n$
- POD basis of rank $\ell < d$: with weights $\alpha_j \ge 0$

$$\min \sum_{j=1}^{n} \alpha_{j} \left\| y_{j} - \sum_{i=1}^{\ell} \langle y_{j}, \psi_{i} \rangle \psi_{i} \right\|^{2} \quad \text{s.t.} \quad \langle \psi_{i}, \psi_{j} \rangle = \delta_{ij}$$

• Inner product: $\langle u, v \rangle = \int_{\Omega} uv \, dx$ or $\langle u, v \rangle = \int_{\Omega} uv + \nabla u \cdot \nabla v \, dx$

Motivation Outline Introduction Balanced truncation Reduced-basis method POD ROM
Computation of the POD basis

• EVD for linear and symmetric \mathcal{R}^n in ODE space:

$$\mathcal{R}^{n} u_{i} = \sum_{j=1}^{n} \alpha_{j} \langle u_{i}, y_{j} \rangle y_{j} = \sigma_{i}^{2} u_{i} \qquad (YY^{T} u_{i} = \sigma_{i}^{2} u_{i})$$

and set $\lambda_i = \sigma_i^2$, $\psi_i = u_i$

• EVD for linear and symmetric $\mathcal{K}^n = ((\alpha_j \langle y_j, y_i \rangle))$ in \mathbb{R}^n :

$$\mathcal{K}^{n}\mathbf{v}_{i} = \sigma_{i}^{2}\mathbf{v}_{i} \qquad (\mathbf{Y}^{T}\mathbf{Y}\mathbf{v}_{i} = \sigma_{i}^{2}\mathbf{v}_{i})$$

イロト イポト イヨト イヨト

and set $\lambda_i = \sigma_i^2$, $\psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j (\mathbf{v}_i)_j y_j$

• Error formula for the POD basis of rank ℓ :

$$\sum_{j=1}^{n} \alpha_{j} \left\| y_{j} - \sum_{i=1}^{\ell} \left\langle y_{j}, \psi_{i} \right\rangle \psi_{i} \right\|^{2} = \sum_{i=\ell+1}^{d} \lambda_{i}$$

SOD for
$$\lambda$$
- ω systems [Muller/ V.]

• PDEs:
$$s = u^2 + v^2$$
, $\lambda(s) = 1 - s$, $\omega(s) = -\beta s$
 $\begin{pmatrix} u_t \\ v_t \end{pmatrix} = \begin{pmatrix} \lambda(s) & -\omega(s) \\ \omega(s) & \lambda(s) \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix} + \begin{pmatrix} \sigma \Delta u \\ \sigma \Delta v \end{pmatrix}$

Homogeneous boundary conditions:

$$u = v = 0$$
 or $\frac{\partial u}{\partial n} = \frac{\partial v}{\partial n} = 0$

• Initial conditions: $u_{\circ}(x_1, x_2) = x_2 - 0.5$, $v_{\circ}(x_1, x_2) = (x_1 - 0.5)/2$

・ロン ・回と ・ヨン・

POD basis for λ - ω systems

• Offsets:
$$\bar{u}(x) = \frac{1}{n} \sum_{j=1}^{n} u(t_j, x)$$
 or $\bar{u} \equiv 0$

• Snapshots: $\hat{u}_j(x) = u(t_j, x) - \bar{u}(x)$ for $1 \le j \le n$

• POD eigenvalue problem: $\langle u, v \rangle = \int_{\Omega} uv \, dx$

$$\mathcal{K}\mathbf{v}_i = \lambda \mathbf{v}_i, \ 1 \leq i \leq \ell, \quad \text{with } \mathcal{K}_{ij} = \int_{\Omega} \hat{u}_j(x) \hat{u}_i(x) \, \mathrm{d}x$$

• POD basis computation: $\psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j(\mathbf{v}_i)_j \hat{\mathbf{u}}_j$

Stefan Volkwein POD for Nonlinear Systems

Numerical example: Burgers equation

$$y_t - \nu y_{xx} + yy_x = f \qquad \text{in } Q = (0, T) \times \Omega$$
$$y(\cdot, 0 = y(\cdot, 1) = 0 \qquad \text{on } (0, T)$$
$$y(0, \cdot) = y_0 \qquad \text{in } \Omega = (0, 2\pi) \subset \mathbb{R}$$

- $y_{\circ}(x) = \sin(x)$ and $\nu = 0.01$
- 1258 finite elements
- Time integration with Matlab's ode15s
- Snapshots $\mathcal{V} = \operatorname{span} \{y(t_1), \ldots, y(t_{100})\}$

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< ≣⇒

< ∃ >

3

Introduction

Balanced truncation

ROM

Numerical example: Navier-Stokes equation

$$\begin{split} u_t + uu_x + vu_y + p_x &= \nu\Delta u & \text{ in } Q = (0, T) \times \Omega \\ v_t + uv_x + vv_y + p_y &= \nu\Delta v & \text{ in } Q \\ u_x + v_y &= 0 & \text{ in } Q \end{split}$$

- $\nu = 5 \cdot 10^{-3}$
- \bullet 3 \times 4804 finite elements (Femlab)

Outline

Time integration with Matlab's ode15s

Stefan Volkwein **POD** for Nonlinear Systems

POD

Numerical example: Energy transport (Boussinesq)

$$v_t + uv_x + vv_y + p_y = \nu\Delta v + \beta\theta$$
 in G

$$u_x + v_y = 0 \qquad \qquad \text{in } G$$

$$\theta_t + u\theta_x + v\theta_y = \alpha\Delta\theta$$
 in Q

• $\alpha = 10^{-5}$, $\beta = 10^{-2}$, $\nu = 10^{-4}$

Outline

- 4 \times 3512 finite elements (Femlab)
- Time integration with Matlab's ode15s
- Snapshots at t_1, \ldots, t_{21} for u, v and θ

Eigenvalues of K-(u(t), u(t))_{2⁽¹⁾(2)} (1) 10⁰ 10⁻¹ 1

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Reduced-order modeling (ROM)

• Heat equation (for instance):

$$y_t - \Delta y = f \qquad \text{in } Q = (0, T) \times \Omega$$
$$\frac{\partial y}{\partial n} = g \qquad \text{on } \Sigma = (0, T) \times \Gamma$$
$$y(0) = y_0 \qquad \text{in } \Omega$$

• Variational formulation:

$$\int_{\Omega} y_t(t)\varphi + \nabla y(t) \cdot \nabla \varphi \, \mathrm{d} x = \int_{\Omega} f(t)\varphi \, \mathrm{d} x + \int_{\Gamma} g(t)\varphi \, \mathrm{d} s \quad \forall \varphi$$

• FE discretization: $y^m(t) \in V^m = \text{span } \{\varphi_1, \dots, \varphi_m\}$

$$\int_{\Omega} y_t^m(t) \varphi + \nabla y^m(t) \cdot \nabla \varphi \, \mathrm{d} x = \int_{\Omega} f(t) \varphi \, \mathrm{d} x + \int_{\Gamma} g(t) \varphi \, \mathrm{d} s \; \forall \varphi \in V^m$$

イロト イポト イヨト イヨト

2

ROM for heat equation

- Time grid: $0 \le t_1 < t_2 < \ldots t_n \le T$, $\delta t_i = t_i t_{i-1}$ for $2 \le i \le n$
- FE snapshots: $y_i = y^m(t_i) \in V^m$, $1 \le j \le n$
- Inner product: $\langle u, v \rangle = \int_{\Omega} uv \, dx$ or $\langle u, v \rangle = \int_{\Omega} uv + \nabla u \cdot \nabla v \, dx$
- Sizes: # FE's \gg # time instances, i.e., $m \gg n$
- Computation of the correlation \mathcal{K}^n : $\alpha_i = \frac{1}{2}$

$$\frac{1}{n} \langle y_j^m, y_i^m \rangle = \frac{1}{n} \sum_{k,l=1}^n Y_{ik} Y_{jl} \langle \varphi_l, \varphi_k \rangle = \left(\frac{1}{n} Y^T M Y\right)_{ij}$$

with $M_{ii} = \langle \varphi_i, \varphi_i \rangle$ (mass or stiffness matrix)

• ROM for heat equation: $y^{\ell}(t) \in V^{\ell} = \text{span} \{\psi_1, \dots, \psi_{\ell}\} \subset V^m$

$$\int_{\Omega} y_t^{\ell}(t) \psi + \nabla y^{\ell}(t) \cdot \nabla \psi \, \mathrm{d} x = \int_{\Omega} f(t) \psi \, \mathrm{d} x + \int_{\Gamma} g(t) \psi \, \mathrm{d} s \; \forall \psi \in V^{\ell}$$

イロン イボン イヨン トヨ

Motivation Outline Introduction Balanced truncation Reduced-basis method POD ROM Heat flow in a block (Part 2)

- FE space $V^m = \text{span} \{\varphi_1, \dots, \varphi_m\}$, m = 1844
- Time grid: T = 5, n = 126, $\delta t = \frac{T}{n-1}$, $t_j = (j-1)\delta t$, $1 \le j \le n$

• Snapshots:
$$y_j^m = \sum_{i=1}^m Y_{ij}\varphi_i, \ 1 \le j \le n$$

- Inner product: $\langle u, v \rangle = \int_{\Omega} uv \, dx$ or $\langle u, v \rangle = \int_{\Omega} uv + \nabla u \cdot \nabla v \, dx$
- Computation of the correlation matrix $(m \gg n)$: $\mathcal{K}^n = \frac{1}{n} Y^T M Y$ with $M = ((\langle \varphi_j, \varphi_i \rangle))$

• EVD for
$$\mathcal{K}^n$$
: $\left(\frac{1}{n}Y^TMY\right)v_i = \lambda_i v_i$ and $\psi_i = \frac{1}{n\sqrt{\lambda_i}}\sum_{j=1}^n (v_i)_j y_j^m \in V^m$

• Decay of the first eigenvalues:

$$\langle u, v \rangle = \begin{cases} \int_{\Omega} uv \, dx & \text{left plot} \\ \int_{\Omega} uv + \nabla u \cdot \nabla v \, dx & \text{right plot} \end{cases}$$

• Approximation property, e.g., for $\ell = 5$

$$\frac{1}{n}\sum_{j=1}^{n}\left\|y_{j}^{m}-\sum_{i=1}^{5}\langle y_{j}^{m},\psi_{i}\rangle\psi_{i}\right\|^{2}=\sum_{i=6}^{126}\lambda_{i}<2\cdot10^{-6}$$

A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

< E.

3

< ≣ ▶

- ROM: $\ell = 5$ POD basis functions
- FE-/POD-solution and error:

æ

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
ROM for λ	- ω system	าร				

- Inner product: $\langle u, v \rangle = \int_{\Omega} uv \, dx$
- POD Galerkin ansatz:

$$u_{\ell}(t,x) = \bar{u}(x) + \sum_{j=1}^{\ell} u_{\ell}^{j}(t)\psi_{j}(x), \quad v_{\ell}(t,x) = \bar{v}(x) + \sum_{j=1}^{\ell} v_{\ell}^{j}(t)\phi_{j}(x)$$

- Reduced-order model (ROM):
 - insert ansatz into PDEs
 - multiply by POD basis functions ψ_i respectively ϕ_i
 - integrate over Ω
- Numerical results:

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
Relative P	OD errors	s for λ - ω sys	tems			

• Offsets:
$$u_{\mathrm{m}}(x) = \frac{1}{n} \sum_{j=1}^{n} u(t_j, x)$$

• Relative POD errors:

	$\bar{u} = 0$	$\bar{u} = u_{\rm m}$		$\bar{u} = 0$	$\bar{u} = u_{\rm m}$
$\ell = 10$	0.005890	0.005945	$\ell = 40$	0.577442	0.460188
$\ell = 15$	0.000350	0.000335	$\ell = 45$	0.898613	0.297619
$\ell = 50$	0.000009	0.000009	$\ell = 50$	0.071035	0.001774

$$E_{\rm rel}(u) = \frac{\sum\limits_{j=1}^{n} \alpha_j \|u_{\ell}(t_j) - u_{h}(t_j)\|^2}{\sum\limits_{j=1}^{n} \alpha_j \|u_{h}(t_j)\|^2} \text{ for } \beta = 1.5 \text{ (left) and } \beta = 2 \text{ (right)}$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ → の < ⊙

Motivation	Outline	Introduction	Balanced truncation	Reduced-basis method	POD	ROM
References	5					

- Karhunen-Loéve Decomp., Principal Component Analysis, SVD,...
- Kunisch & V.: Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition, JOTA, 102:345-371, 1999
- Kunisch & V.: Galerkin proper orthogonal decomposition methods for parabolic problems, Numerische Mathematik, 90:117-148, 2001
- Kahlbacher & V.: Galerkin proper orthogonal decomposition methods for parameter dependent elliptic systems, to appear in Discussiones Mathematicae: Differential Inclusions, Control and Optimization, 2007
- Kunisch & V.: Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics, SINUM, 40:492-515, 2002

向下 イヨト イヨ