Outline	POD	ROM	Numerical example

Error estimates for POD Galerkin schemes

Stefan Volkwein

Institute for Mathematics and Scientific Computing University of Graz, Austria

PhD program in Mathematics for Technology Catania, May 22, 2007

Outline	POD	ROM	Numerical examples
Motivation			
Burgers	equation:		

$$\begin{aligned} y_t - \nu y_{xx} + yy_x &= f & \text{ in } Q = (0, T) \times \Omega \\ y(\cdot, 0 = y(\cdot, 1) = 0 & \text{ on } (0, T) \\ y(0, \cdot) &= 0 & \text{ in } \Omega = (0, 1) \subset \mathbb{R} \end{aligned}$$

• exact solution
$$y(t,x) = (x^2 - x)\sin(2\pi t)$$
 and $f = y_t - \nu y_{xx} + yy_x$

- FE with error $< 10^{-10}$ and fine time grid with $n = 5 \cdot 2^{11}$, $\delta t = \frac{T}{n}$
- Snapshots at $t_1^i, \ldots, t_{n_i}^i$ with $\delta t^i = 2^{11-i} \, \delta t, \ t_j^i = j \delta t^i, \ 1 \le i \le 11$

• Error:
$$e(n_i) = \delta t^i \sum_{j=1}^{n_i} \int_{\Omega} \left| y_{FE}(t^i_j, x) - y^\ell(t^i_j, x) \right|^2 \mathrm{d}x$$

• Implicit Euler: error $O(\delta t) \Rightarrow e(n_i) \approx O(\delta t_i^2) = O(\frac{1}{n_i^2})$

• Quotient:
$$n_i^2 = 4n_{i-1}^2 \Rightarrow \frac{e(n_{i-1})}{e(n_i)} \approx 4$$

i	1	2	3	4	5	6	7	8	9	10	11
$\frac{e(n_{i-1})}{e(n_{i})}$	3.11	3.55	3.77	3.88	3.94	3.96	3.97	3.98	3.98	3.96	3.92

Outline	POD	ROM	Numerical examples

- POD method: discrete and continuous version
- Reduced-order modeling for ODE system
- Error analysis

Outline

- Numerical examples:
 - laser surface hardening
 - heat equation
 - parameter dependent elliptic PDEs

Outline POD ROM Numerical examples POD method (discrete version) Image: Control of the second second

- **Snapshots**: *y*₁,..., *y*_n
- Snapshot ensemble: $\mathcal{V} = \operatorname{span} \{y_1, \ldots, y_n\}, d = \dim \mathcal{V} \le n$
- Inner product: $\langle \cdot, \cdot \rangle$, e.g., $\langle u, v \rangle = u^T v$ for $u, v \in \mathbb{R}^N$
- POD basis of any rank $\ell \in \{1, \ldots, d\}$: with weights $\alpha_j \ge 0$

$$\min \sum_{j=1}^{n} \alpha_{j} \left\| y_{j} - \sum_{i=1}^{\ell} \langle y_{j}, \psi_{i} \rangle \psi_{i} \right\|^{2} \quad \text{s.t.} \quad \langle \psi_{i}, \psi_{j} \rangle = \delta_{ij}$$

Constrained optimization:

$$\min J(\psi_1, \dots, \psi_\ell) \quad \text{s.t.} \quad \langle \psi_i, \psi_j \rangle = \delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{array} \right.$$

s.t. - subject to

伺 ト イヨト イヨト

Outline	POD	ROM	Numerical examples

Optimality conditions and computation of POD basis

• EVP for linear and symmetric \mathcal{R}^n :

$$\mathcal{R}^{n} u_{i} = \sum_{j=1}^{n} \alpha_{j} \langle u_{i}, y_{j} \rangle y_{j} = \lambda_{i} u_{i}$$

and set $\psi_i = u_i$

• EVP for linear, symmetric $n \times n$ -matrix $\mathcal{K}^n = ((\langle y_j, y_i \rangle))$:

$$\mathcal{K}^n \mathbf{v}_i = \lambda_i \mathbf{v}_i$$

and set $\psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j (v_i)_j y_j$ (methods of snapshots)

• Error for the POD basis of rank ℓ :

$$\sum_{j=1}^{n} \alpha_{j} \left\| y_{j} - \sum_{i=1}^{\ell} \langle y_{j}, \psi_{i} \rangle \psi_{i} \right\|^{2} = \sum_{i=\ell+1}^{d} \lambda_{i}$$

Continuous POD in Hilbert spaces [Henri/Yvon, Kunisch/V., ...]

- Snapshots: $y(\mu)$ for all $\mu \in \mathcal{I}$ ($\mathcal{I} = [0, T]$ or $\mathcal{I} = \mathcal{D}$)
- Snapshot ensemble: $\mathcal{V} = \{y(\mu) \mid \mu \in \mathcal{I}\}, d = \dim \mathcal{V} \le \infty$
- POD basis of rank $\ell < d$:

$$\min \int_{\mathcal{I}} \left\| y(\mu) - \sum_{i=1}^{\ell} \left\langle y(\mu), \psi_i \right\rangle \psi_i \right\|^2 \mathrm{d}\mu \quad \text{s.t.} \quad \left\langle \psi_i, \psi_j \right\rangle = \delta_{ij}$$

 \bullet Optimality conditions: EVP for linear, symmetric, compact ${\cal R}$

$$\mathcal{R}\psi_i^{\infty} = \int_{\mathcal{I}} \langle \psi_i^{\infty}, y(\mu) \rangle \, y(\mu) \, \mathrm{d}\mu = \lambda_i^{\infty} \psi_i^{\infty} \quad \text{for } i \in \mathbb{N}$$

• Error for the POD basis of rank ℓ :

$$\int_{\mathcal{I}} \left\| y(\mu) - \sum_{i=1}^{\ell} \langle y(\mu), \psi_i^{\infty} \rangle \psi_i^{\infty} \right\|^2 \mathrm{d}\mu = \sum_{i=\ell+1}^{\infty} \lambda_i^{\infty}$$

伺い イヨト イヨト

Outline	POD	ROM	Numerical examples

Relationship between 'discrete' and continuous POD

• Operators \mathcal{R}^n and \mathcal{R} :

$$egin{aligned} \mathcal{R}^{n}\psi &= \sum_{j=1}^{n} lpha_{j} \left\langle \psi, y(\mu_{j})
ight
angle y(\mu_{j}) \ \mathcal{R}\psi &= \int_{\mathcal{I}} \left\langle \psi, y(\mu)
ight
angle y(\mu) \, \mathrm{d}\mu \end{aligned}$$

- Operator convergence of $\mathcal{R}^n \mathcal{R}$: *y* smooth and appropriate α_j 's
- Perturbation theory [Kato]: $(\lambda_i, \psi_i) \stackrel{n \to \infty}{\longrightarrow} (\lambda_i^{\infty}, \psi_i^{\infty})$ for $1 \le i \le \ell$
- Choice of the weights α_j ?: ensure convergence $\mathcal{R}^n \xrightarrow{n \to \infty} \mathcal{R}$

伺下 イヨト イヨト

Outline POD ROM Numerica	examples
--------------------------	----------

Reduced-order modelling for ODE system

• Initial value problem in \mathbb{R}^N :

$$\dot{y}(t) = Ay(t) + f(t, y(t))$$
 for $t \in (0, T]$,
 $y(0) = y_0$

for $y_0 \in \mathbb{R}^N$ and continuous $f : [0, T] \times \mathbb{R}^N \to \mathbb{R}^N$

- Snapshots: $y(t) \in \mathbb{R}^N$ for all $t \in [0, T]$
- Inner product: $\langle u, v \rangle = u^T v$ (Euclidean product)
- POD basis of rank $\ell \leq N$: $\psi_1, \ldots, \psi_\ell \in \mathbb{R}^N$

• Galerkin ansatz:
$$y^{\ell}(t) = \sum_{j=1}^{\ell} (y^{\ell}(t)^{\mathsf{T}} \psi_j) \psi_j = \sum_{j=1}^{\ell} y_j^{\ell}(t) \psi_j$$

• Galerkin projection of the ODE:

$$\begin{split} \psi_i^T \dot{y}^{\ell}(t) &= \psi_i^T A y^{\ell}(t) + \psi_i^T f(t, y^{\ell}(t)), \quad t \in (0, T], \ i = 1, \dots, \ell \\ \psi_i^T y^{\ell}(0) &= \psi_i^T y_0, \qquad \qquad i = 1, \dots, \ell \end{split}$$

POD Galerkin projection of the ODE

• Galerkin projection of the ODE: $f \equiv 0$

$$\psi_i^T \dot{y}^\ell(t) = \psi_i^T A y^\ell(t), \qquad t \in (0, T], \ i = 1, \dots, \ell$$

$$\psi_i^T y^\ell(0) = \psi_i^T y_0 \qquad i = 1, \dots, \ell$$

• Inserting Galerkin ansatz:

۲

$$\begin{split} \psi_i^T \dot{y}^\ell(t) &= \sum_{j=1}^\ell \dot{y}_j^\ell(t) \psi_i^T \psi_j = \dot{y}_i^\ell(t) \\ \psi_i^T A y^\ell(t) &= \psi_i^T \left(\sum_{j=1}^\ell y_j^\ell(t) A \psi_j \right) = \sum_{j=1}^\ell y_j^\ell(t) \psi_i^T A \psi_j \\ \\ \mathsf{ROM} \text{ in } \mathbb{R}^\ell \colon y^\ell = (y_i^\ell), \ A^\ell = ((\psi_i^T A \psi_j)), \ y_0^\ell = (\psi_i^T y_0) \\ \dot{y}^\ell(t) &= A^\ell y(t) & \text{ for } t \in (0, T] \\ y^\ell(0) &= y_0^\ell \end{split}$$

御 と く ヨ と く ヨ と …

Outline POD

ROM

Numerical examples

Error analysis — Part 1

• Goal: estimate
$$\int_0^T \|y(t) - y^\ell(t)\|_{\mathbb{R}^N}^2 dt$$

• Orthogonal projector onto $V^{\ell} = \operatorname{span} \{\psi_i\}_{i=1}^{\ell}$:

$$\mathcal{P}^{\ell}\psi = \sum_{j=1}^{\ell} \left(\psi^{\mathsf{T}}\psi_{j}\right)\psi_{j} \quad \text{for } \psi \in \mathbb{R}^{\mathsf{N}}$$

 $\Rightarrow y^{\ell}(0) = \mathcal{P}^{\ell} y_0 = \mathcal{P}^{\ell} y(0)$

• POD basis:

$$\int_0^T \left\| y(t) - \sum_{i=1}^\ell \left(y(t)^T \psi_i \right) \psi_i \right\|^2 \mathrm{d}t = \int_0^T \left\| y(t) - \mathcal{P}^\ell y(t) \right\|^2 \mathrm{d}t$$

• Decomposition:

$$y(t) - y^{\ell}(t) = \underbrace{y(t) - \mathcal{P}^{\ell}y(t)}_{\in (V^{\ell})^{\perp}} + \underbrace{\mathcal{P}^{\ell}y(t) - y^{\ell}(t)}_{\in V^{\ell}} = \varrho^{\ell}(t) + \vartheta^{\ell}(t)$$

-20

 Outline
 POD
 ROM
 Numerical examples

 Error analysis — Part 2

• Decomposition:

$$y(t) - y^{\ell}(t) = y(t) - \mathcal{P}^{\ell}y(t) + \mathcal{P}^{\ell}y(t) - y^{\ell}(t) = \varrho^{\ell}(t) + \vartheta^{\ell}(t)$$

• Projector onto $V^{\ell} = \operatorname{span} \{\psi_i\}_{i=1}^{\ell}$: $\mathcal{P}^{\ell}\psi = \sum_{j=1}^{\ell} (\psi^T \psi_j) \psi_i$

• Estimate for ϱ^{ℓ} :

$$\int_0^T \|\varrho^\ell(t)\|^2 \,\mathrm{d}t = \int_0^T \|y(t) - \mathcal{P}^\ell y(t)\|^2 \,\mathrm{d}t = \sum_{i=\ell+1}^\infty \lambda_i^\infty$$

• Differential equation for ϑ^{ℓ} : for $i \in \{1, \dots, \ell\}$ $\psi_i^T \dot{\vartheta}^{\ell}(t) = \psi_i^T \left(\mathcal{P}^{\ell} \dot{y}(t) - \dot{y}^{\ell}(t) \right) = \psi_i^T \left(\dot{y}(t) - \dot{y}^{\ell}(t) + \mathcal{P}^{\ell} \dot{y}(t) - \dot{y}(t) \right)$ $= \psi_i^T \left(Ay(t) - Ay^{\ell}(t) + \mathcal{P}^{\ell} \dot{y}(t) - \dot{y}(t) \right)$ $= \psi_i^T \left(A(\varrho^{\ell}(t) + \vartheta^{\ell}(t)) + \mathcal{P}^{\ell} \dot{y}(t) - \dot{y}(t) \right)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Error analysis — Part 3

• Differential equation for ϑ^{ℓ} : for $i \in \{1, \dots, \ell\}$ $\psi_i^T \dot{\vartheta}^{\ell}(t) = \psi_i^T (A(\varrho^{\ell}(t) + \vartheta^{\ell}(t)) + \mathcal{P}^{\ell} \dot{y}(t) - \dot{y}(t))$

• Summation: $\vartheta^{\ell}(t) = \sum_{i=1}^{\ell} c_i(t)\psi_i$ $\vartheta^{\ell}(t)^{T} \dot{\vartheta}^{\ell}(t) = \vartheta^{\ell}(t)^{T} (A(\varrho^{\ell}(t) + \vartheta^{\ell}(t)) + \mathcal{P}^{\ell} \dot{y}(t) - \dot{y}(t))$

• Estimation:

$$\frac{1}{2}\frac{\mathrm{d}}{\mathrm{d}t}\|\vartheta^\ell(t)\|^2 \leq C\Big(\|\vartheta^\ell(t)\|^2 + \|\varrho^\ell(t)\|^2 + \|\dot{y}(t) - \mathcal{P}^\ell \dot{y}(t)\|^2\Big)$$

• Gronwall lemma: $\vartheta^{\ell}(0) = \mathcal{P}^{\ell} y_0 - y^{\ell}(0) = 0$

通 とう きょう うちょう

Error estimate for continuous POD

• Error estimate (continuous POD method):

$$\begin{split} \int_0^T \|y(t) - y^\ell(t)\|^2 \, \mathrm{d}t &\leq 2 \int_0^T \|\varrho^\ell(t)\|^2 + \|\vartheta^\ell(t)\|^2 \, \mathrm{d}t \\ &\leq C \Big(\sum_{i=\ell+1}^\infty \lambda_i^\infty + \int_0^T \|\dot{y}(t) - \mathcal{P}^\ell \dot{y}(t)\|^2 \, \mathrm{d}t \Big) \end{split}$$

- Remarks:
 - dependence of the decay of the eigenvalues λ_i
 - dependence on the approximation quality for $\dot{y}(t)$
- Modified POD method:

$$\min \int_0^T \left\| y(t) - \mathcal{P}^\ell y(t) \right\|^2 + \left\| \dot{y}(t) - \mathcal{P}^\ell \dot{y}(t) \right\|^2 \mathrm{d}t \quad \text{s.t.} \quad \langle \psi_i, \psi_j \rangle = \delta_{ij}$$

• Error estimate: $\int_0^T \|y(t) - y^{\ell}(t)\|^2 \, \mathrm{d}t \le C \sum_{i=\ell+1}^\infty \lambda_i^\infty$

Extensions

• Full discrete method: $t_j = j\Delta t$, $Y_j^{\ell} \approx y(t_j)$

$$\psi_i^T \left(\frac{Y_i^{\ell} - Y_{j-1}^{\ell}}{\Delta t} \right) = \psi_i^T A Y_j^{\ell} + \psi_i^T f(t, Y_j^{\ell}), \quad j = 1, \dots, m, \ i = 1, \dots, \ell$$
$$\psi_i^T Y_0^{\ell} = \psi_i^T y_0, \qquad \qquad i = 1, \dots, \ell$$

• Discrete POD:
$$\lambda_i = \lambda_i^n$$
, $\psi_i = \psi_i^n$

• Error estimate:

$$\begin{split} \sum_{j=1}^n \alpha_j \left\| y(t_j) - Y_j^\ell \right\|_{\mathbb{R}^N}^2 &\leq C \bigg((\Delta t)^2 + \sum_{i=\ell+1}^n \lambda_i + \sum_{j=1}^n \alpha_j \left| \psi_i^\mathsf{T} \dot{y}(t_j) \right|^2 \bigg) \\ &= O \bigg((\Delta t)^2 + \sum_{i=\ell+1}^\infty \left(\lambda_i^\infty + \int_0^\mathsf{T} \left| (\psi_i^\infty)^\mathsf{T} \dot{y}(t) \right|^2 \mathrm{d}t \bigg) \bigg) \end{split}$$

• Parameter-dependent elliptic systems

Outline POD ROM Numerical exa

Laser surface hardening [Hömberg/V.]

• Motivation:

• Phase transition of steel:

<ロ> (日) (日) (日) (日) (日)

Outline	POD	ROM	Numerical examples
Model equations			

• Energy balance and Fourier's law:

$$\begin{cases} \varrho c_{\rho} \theta_{t} - k \Delta \theta = \alpha u - \varrho L a_{t} & \text{in } Q = (0, T) \times \Omega \\ \frac{\partial \theta}{\partial n} = 0 & \text{auf } \Sigma = (0, T) \times \partial \Omega \\ \theta(0, \cdot) = \theta_{\circ} & \text{in } \Omega \subset \mathbb{R}^{d} \end{cases}$$

• Phase transition of austenite:

$$\begin{cases} a_t = f(\theta, a) & \text{in } Q \\ a(0, \cdot) = 0 & \text{in } \Omega \end{cases}$$

- Intensity of the laser: $u = u(t) \in L^2(0, T)$
- Nonlinearity: $f_+(\theta, a) = \max \{a_{eq}(\theta) a, 0\}/\tau(\theta), \tau(\theta) > 0$

ヨト イヨト イヨト

FE and POD temperatures at t = T

Stefan Volkwein Error estimates for POD Galerkin schemes

Outline	POD	ROM	Numerical examples

POD error

• Measures for the error:

$$\Psi^{i} = \frac{\max_{0 \leq j \leq N} \|\theta_{\ell}^{i} - \theta_{FE}^{j}\|_{L^{\infty}(\Omega)}}{\max_{0 \leq j \leq N} \|\theta_{FE}^{i}\|_{L^{\infty}(\Omega)}} \quad \text{with} \quad \begin{cases} i = 1 & \text{POD with DQ} \\ i = 2 & \text{POD without DQ} \end{cases}$$

	X = 1	$L^2(\Omega)$	X = I	$H^1(\Omega)$
ℓ	Ψ^1	Ψ^2	Ψ^1	Ψ^2
10	24.1%	40.6%	21.0%	40.1%
25	1.6%	26.9%	4.0%	24.6%

• Heuristic:
$$\mathcal{E}(\ell) = \sum_{i=1}^{\ell} \lambda_i \Big/ \sum_{i=1}^{d} \lambda_i \cdot 100\% \ge 94\%$$

	$\ell = 10$	$\ell = 15$	$\ell = 20$	$\ell = 25$
$\mathcal{E}(\ell), X = L^2(\Omega)$	94.3	98.4	99.5	99.8
$\mathcal{E}(\ell), X = H^1(\Omega)$	77.7	87.4	92.5	95.7

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Outline	POD	ROM	Numerical examples
Heat equation			

• Model equations:

$$\begin{split} y_t(t,\mathbf{x}) - \Delta y(t,\mathbf{x}) &= 0 & \text{for all } (t,\mathbf{x}) \in Q = (0,\mathcal{T}) \times \Omega \\ & \frac{\partial y}{\partial n}(t,\mathbf{x}) = 0 & \text{for all } (t,\mathbf{x}) \in \Sigma_1 = (0,\mathcal{T}) \times \Gamma_1 \\ & \frac{\partial y}{\partial n}(t,\mathbf{x}) = 100g(t,\mathbf{x}) & \text{for all } (t,\mathbf{x}) \in \Sigma_2 = (0,\mathcal{T}) \times \Gamma_2 \\ & y(0,\mathbf{x}) = 0 & \text{for all } \mathbf{x} = (x,y,z) \in \Omega \subset \mathbb{R}^3 \end{split}$$

Outline		POI
---------	--	-----

FE and POD results

Computing the FE mesh and matrices	50.0 seconds
FE solve	49.9 seconds
Computing 15 POD basis functions	87.1 seconds
Computing the reduced-order model, $\ell=15$	< 2.0 seconds
POD solve, $\ell=15$	< 0.1 seconds

< □ > < □ > < □ > < Ξ > < Ξ > ...

Estimate the decay of the eigenvalues

• Error estimate:
$$\|y^{\ell} - y\|^2 \sim \sum_{i=\ell+1}^{\infty} \lambda_i$$

• Ansatz:
$$\lambda_i = \lambda_1 e^{-\alpha(i-1)}$$
 for $i \ge 1$

• Error quotient:

$$\frac{\|y^{\ell} - y\|^2}{\|y^{\ell+1} - y\|^2} \sim \frac{\sum_{i=\ell+1}^{\infty} \lambda_i}{\sum_{i=\ell+2}^{\infty} \lambda_i} = \frac{\sum_{i=\ell+1}^{\infty} e^{-\alpha(i-1)}}{\sum_{i=\ell+2}^{\infty} e^{-\alpha(i-1)}} = \frac{\sum_{i=0}^{\infty} (e^{-\alpha})^i}{\sum_{i=0}^{\infty} (e^{-\alpha})^i - 1} = e^{\alpha}$$

• Experimental order of decay:

$$EOD := rac{1}{\ell_{\max}} \sum_{\ell=1}^{\ell_{\max}} Q(\ell)$$

with
$$Q(\ell) = \ln \frac{\|y^{\ell} - y\|^2}{\|y^{\ell+1} - y\|^2} \sim \alpha$$

< 注→ < 注→

Outline POD ROM N

Numerical examples

Experimental order of decay

- decay of the eigenvalues
- + estimated decay with error norm

$$||u|| = \left(\int_0^T \int_{\Omega} |u(t,x)|^2 + |\nabla u(t,x)|^2 \, \mathrm{d}x \mathrm{d}t\right)^{1/2}$$

* estimated decay with error norm $\|u\| = \left(\int_0^T \int_\Omega \left|u(t,x)\right|^2 \mathrm{d}x \mathrm{d}t\right)^{1/2}$

Outline POD ROM Numerical examp

Parameter-dependent systems

• Model equations:
$$\beta(x) = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$\begin{aligned} -2\Delta u + \beta \cdot \nabla u + au &= 1 & \text{in } \Omega = (0,1) \times (0,1) \\ 2 \frac{\partial u}{\partial n} + \frac{3}{2} u &= -1 & \text{on } \Gamma \end{aligned}$$

- Snapshots: (FE) solutions $\{u_j\}_{j=1}^{102}$ for $a_j = -51.5 + j$
- POD basis of rank ℓ :

$$\min \sum_{j=1}^{102} \left\| u_j - \sum_{i=1}^{\ell} \left\langle u_j, \psi_i \right\rangle \psi_i \right\| \quad \text{s.t.} \quad \left\langle \psi_i, \psi_j \right\rangle = \delta_{ij} \qquad (\mathbf{P}^{\ell})$$

with $\langle \varphi, \phi \rangle = \int_{\Omega} \varphi \phi \, \mathrm{d}x$ and $\|\varphi\| = \sqrt{\langle \varphi, \varphi \rangle}$

• Solution to (\mathbf{P}^{ℓ}): correlation matrix $K_{ij} = \langle u_i, u_j \rangle$

$$K\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_\ell, \quad \psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^{102} (\mathbf{v}_i)_j u_j$$

Outline POD ROM

Numerical examples

Reduced-order modeling (ROM)

- Ansatz: $u^{\ell} = \sum_{i \leq \ell} u_i^{\ell} \psi_i$ and Galerkin projection
- Error estimate: $\int \|u^{\ell}(a) u(a)\|^2 da \sim \sum_{i>\ell} \lambda_i$
- Exponential decay of the eigenvalues: $\lambda_i = \lambda_1 e^{-\eta(i-1)}$
- Experimental order of decay (EOD):

$$EOD := \frac{1}{\ell_{\max}} \sum_{\ell=1}^{\ell_{\max}} Q(\ell) \quad \text{with} \quad Q(\ell) = \ln \frac{\int \|u^{\ell}(a) - u(a)\|^2 \, \mathrm{d}a}{\int \|u^{\ell+1}(a) - u(a)\|^2 \, \mathrm{d}a} \sim \eta$$

Stefan Volkwein Error estimates for POD Galerkin schemes

Outline	POD	ROM	Numerical examples
References			

- Maday et al., Yvon et al., Petzold et al.,...
- Kunisch & V.: Crank-Nicolson Galerkin Proper Orthogonal Decomposition Approximations for a General Equation in Fluid Dynamics, 18th GAMM Seminar, Leipzig, 97-114, 2002
- Hömberg & V.: Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Math. and Comp. Mod., 38:1003-1028, 2003
- Hinze & V.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, (will be) submitted

向下 イヨト イヨト