

POD for Nonlinear Systems Suboptimal Control & Parameter Estimation

Stefan Volkwein

Institute for Mathematics and Scientific Computing University of Graz, Austria

CEA-EDF-INRIA School Model reduction: theory and Applications

October 8-10, 2007, Rocquencourt, France

< 1[™] >

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
Motiva	tion					

• Optimal control of evolution problems:

 $\min \mathsf{J}(\mathsf{y},\mathsf{u}) \quad \text{s.t.} \quad \dot{\mathsf{y}}(t) = \mathsf{F}(\mathsf{y}(t),\mathsf{u}(t)) \text{ for } t > 0, \ \mathsf{y}(0) = \mathsf{y}_{\circ}, \ \mathsf{u} \in \mathcal{U}_{ad}$

Optimization methods

- First-order methods: gradient type methods
 - \Rightarrow per iteration nonlinear state and linear adjoint equations
- Second-order methods: SQP or Newton methods
 - \Rightarrow per iteration coupled linear state and linear adjoint equations
- Spatial discretization by FE or FD
 ⇒ large-scale problems and feedback-strategies not feasible
- Model reduction by POD

イロト イポト イヨト イヨト

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
Outline	e					

- Suboptimal control:
 - nonlinear heat equation
 - snapshot ensembles in control
- Parameter identification: sampling with respect to the parameters
 - reliable identification by nonlinear optimization
 - bilevel optimization as an application
- A-posteriori error analysis: choose number of POD basis elements
 - error measure via adjoint calculus
 - vary number of POD basis elements
 - no change of POD basis in contrast to OS-POD [Kunisch/V.]
- Static output feedback design (SOF)
- References

Nonlinear heat equation [Diwoky/V.]

• Model problem:

$$\min J(y,u) = \frac{1}{2} \int_{\Omega} |y(T,x) - z(x)|^2 \,\mathrm{d}x + \frac{\beta}{2} \int_{0}^{T} \int_{\Gamma} |u(t,s)|^2 \,\mathrm{d}s \,\mathrm{d}t$$

subject to

$$\begin{split} y_t(t,x) &= k \Delta y(t,x) & \text{for } (t,x) \in Q = (0,T) \times \Omega \\ \frac{\partial y}{\partial n}(t,s) &= b(y(t,s)) + u(t,s) & \text{for } (t,s) \in \Sigma = (0,T) \times \Gamma \\ y(0,x) &= y_{\circ}(x) & \text{for } x \in \Omega \subset \mathbb{R}^2 \end{split}$$

• Assumptions: $T, \beta, k > 0, z, y_{\circ} \in C(\overline{\Omega}), b \in C^{2,1}(\mathbb{R})$ with $b' \leq 0$

・回 ・ ・ ヨ ・ ・ ヨ ・ ・

Motivation Outline Nonlinear heat equation Parameter Id. A-posteriori error SOF References

- Optimization variables: $z = (y, u) \in Z$, Z function space
- Equality constraints: $e = (e_1, e_2)$

$$\begin{split} \langle e_1(z), \varphi \rangle &= \int_0^T \int_\Omega y_t(t, x) \varphi(t, x) + k \nabla y(t, x) \cdot \nabla \varphi(t, x) \, \mathrm{d}x \mathrm{d}t \\ &- \int_0^T \int_\Gamma \big(b(y(t, s)) + u(t, s) \big) \varphi(t, s) \, \mathrm{d}s \mathrm{d}t \\ e_2(z) &= y(0, \cdot) - y_\circ \end{split}$$

Infinite-dimensional optimization in function spaces:

min J(z) subject to e(z) = 0

- Lagrange function: $L(z, p) = J(z) + \langle e(z), p \rangle$
- Optimality conditions: $\nabla L(z, p) \stackrel{!}{=} 0$ (Fréchet-derivatives)

|▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ ● ● ● ● ●

Motivation Outline Nonlinear heat equation Parameter Id. A-posteriori error SOF References First-order optimality conditions

• $\nabla_y L(y, u, p) \stackrel{!}{=} 0$: adjoint equation

$$\begin{aligned} -p_t(t,x) &= k\Delta p(t,x) & \text{for } (t,x) \in Q = (0,T) \times \Omega \\ \frac{\partial p}{\partial n}(t,s) &= b'(y(t,s))p(t,s) & \text{for } (t,s) \in \Sigma = (0,T) \times \Gamma \\ p(T,x) &= -(y(T,x) - z(x)) & \text{for } x \in \Omega \end{aligned}$$

• $\nabla_u L(z, p) \stackrel{!}{=} 0$: optimality condition $\beta u = kp$ on Σ

• $\nabla_p L(z, p) \stackrel{!}{=} 0$: state equation

$$y_t(t,x) = k\Delta y(t,x) \qquad \text{for } (t,x) \in Q$$

$$\frac{\partial y}{\partial n}(t,s) = b(y(t,s)) + u(t,s) \qquad \text{for } (t,s) \in \Sigma$$

$$y(0,x) = y_o(x) \qquad \text{for } x \in \Omega$$

・ロト ・同ト ・ヨト ・ヨト

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
SQP met	hods					

- SQP: sequentiel quadratic programming
- Quadratic programming problem: $L(z, p) = J(z) + \langle e(z), p \rangle$

 $\min L(z^n, p^n) + L_z(z^n, p^n)\delta z + \frac{1}{2}L_{zz}(z^n, p^n)(\delta z, \delta z)$ subject to $e(z^n) + e'(z^n)\delta z = 0$ (QPⁿ)

• First-order optimality conditions for (QPⁿ): KKT system

$$\begin{pmatrix} L_{zz}(z^n, p^n) & e'(z^n)^* \\ e'(z^n) & 0 \end{pmatrix} \begin{pmatrix} \delta z \\ \delta p \end{pmatrix} = - \begin{pmatrix} L_z(z^n, p^n) \\ e(z^n) \end{pmatrix}$$

- Convergence: locally quadratic rate in (z^n, p^n) (infinite-dimensional)
- Globalization: modification of the Hessian and line-search methods
- Alternative: trust-region methods

▲□→ ▲ 国 → ▲ 国 →

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
POD mo	del reduc	tion				

- \bullet Goal: POD Galerkin ansatz using ℓ POD basis functions
- Snapshot POD: solve of heat equation for $0 \le t_1 < \ldots < t_n \le T$
- Problems:
 - unknown optimal control ⇒ good snapshot set?
 - $u = \frac{k}{\beta}p$ depends on $p \Rightarrow \text{POD}$ approximation for p?
- Strategy: iterate basis computation and include adjoint information in the snapshot ensemble

向下 イヨト イヨト

- (1) Choose estimate u^0 ; compute snapshots by solving state equation with $u = u^0$ and adjoint equation with $y = y(u^0)$; i := 0
- (2) Determine ℓ POD basis functions and associated ROM of infinite-dimensional optimization problem
- (3) Compute solution u^{i+1} of optimization problem (e.g., by SQP)

(4) If
$$\Psi(i) = \frac{\|u^{i+1} - u^i\|}{\|u^{i+1}\|} \leq TOL$$
 then stop (stopping criterium)

(5) i := i + 1; compute snapshots by solving state equation with control $u = u^i$ and adjoint equation with $y = y(u^i)$; go back to (2)

Alternative: OS-POD, i.e., change of basis within the optimization via optimality conditions

・ロン ・回と ・ヨン ・ヨン

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References

Numerical results

Data:
$$y_0(x_1, x_2) = 10x_1x_2$$
, $z(x_1, x_2) = 2 + 2|2x_1 - x_2|$, $b(y) = \arctan(y)$, $k = \beta = \frac{1}{10}$, $T = 1$, 185 FEs
Recall: $\Psi(i) = \frac{\|u^{i+1} - u^i\|}{\|u^{i+1}\|}$ stopping criterium for dynamic POD strategy

i	relative L^2 error for y	relative L^2 error for u	J(y, u)	$\Psi(i)$
0	4.4	12.0	0.358	1.00
1	1.0	8.1	0.360	0.13
2	0.9	6.8	0.361	0.08
POD _{opt}	0.5	5.7	0.358	
FE			0.358	

		POD	FE
Compute snapshots	M-flops	18	
	CPU time in s	3.3	
Compute POD basis	M-flops	0.44	
	CPU time in s	0.01	
Solve with SQP	M-flops	84	
	CPU time in s	22	
total	M-flops	$1.0 \cdot 10^2$	$1.9 \cdot 10^5$
	CPU time in s	$2.5 \cdot 10^{1}$	$6.6 \cdot 10^{3}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Suboptimal control

PDE:

$$\begin{array}{ll} y_t = \Delta y & \mbox{in } (0, T) \times \Omega \\ \frac{\partial y}{\partial n} = 0 & \mbox{on } (0, 1) \times \Gamma_1 \\ \frac{\partial y}{\partial n} = u(t)q & \mbox{on } (0, 1) \times \Gamma_2 \\ y(0) = 0 & \mbox{on } \Omega \subset \mathbb{R}^3 \end{array}$$

Boundary condition at z = 0.5:

$$q(t, \mathbf{x}) = e^{-(x-0.7\cos(2\pi t))^2} \cdot e^{-(y-0.7\sin(2\pi t))^2}$$

Cost functional:

$$\begin{split} J(y,u) &= \frac{1}{2} \int_{\Omega} |y(T) - 1|^2 \,\mathrm{d}x \\ &+ \frac{\sigma}{2} \,\int_0^T |u(t)|^2 \,\mathrm{d}t \end{split}$$

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
POD com	nutation					

• Snapshot ensembles:

$$\begin{split} \mathcal{V}_1 &= \operatorname{span}\left\{\{\bar{y}^h(t_j)\}_j, \left\{\frac{\bar{y}^h(t_j) - \bar{y}^h(t_{j-1})}{\Delta t}\right\}_j\right\}\\ \mathcal{V}_2 &= \operatorname{span}\left\{\{\bar{p}^h(t_j)\}_j, \left\{\frac{\bar{p}^h(t_j) - \bar{p}^h(t_{j-1})}{\Delta t}\right\}_j\right\}\\ \mathcal{V}_3 &= \mathcal{V}_1 \cup \mathcal{V}_2 \end{split}$$

• $E(\ell) = \sum_{i=1}^{\ell} \lambda_i \cdot 100\%$:

ℓ	$E(\ell)$ for \mathcal{V}^1	$\mathit{E}(\ell)$ for \mathcal{V}^2	$\mathit{E}(\ell)$ for \mathcal{V}^3
$\ell = 1$	45.89 %	70.44 %	48.20 %
$\ell = 3$	87.65 %	97.41 %	84.39 %
$\ell = 7$	99.37 %	100.00 %	98.06 %
$\ell = 11$	99.78 %	100.00 %	99.82 %
$\ell = 15$	99.80 %	100.00 %	99.90 %

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

SOF

3

Approximation of the control variable

Outline

l	$ u^{h} - u^{\ell} $ for $\{\psi_{i}^{1}\}_{i=1}^{\ell}$	$ u^{h} - u^{\ell} $ for $\{\psi_{i}^{2}\}_{i=1}^{\ell}$	$ u^{h} - u^{\ell} $ for $\{\psi_{i}^{3}\}_{i=1}^{\ell}$
$\ell = 1$	0.5100	0.5437	0.4672
$\ell = 3$	0.3792	0.1200	0.1869
$\ell = 5$	0.3506	0.0588	0.1201
$\ell = 9$	0.3031	0.0585	0.0566
$\ell = 13$	0.2057	0.0596	0.0555

 $\|u^h - u^\ell\|$ for different POD basis $\{\psi_i^j\}_{i=1}^\ell$ corresponding to the ensembles $\mathcal{V}_j, j=1,2,3$

Outline

< 注 → < 注 →

Image: A matrix

Parameter estimation [Kahlbacher/V., FWF P-19588]

• Model equations:
$$c = \frac{7}{10}$$
, $\beta(x) = \begin{pmatrix} 1 \\ x_1 \end{pmatrix}$, $f(x) = x_1$, $\sigma = \frac{3}{2}$, $g \equiv 1$
 $-c \Delta u + \beta \cdot \nabla u + 10u^3 + au = f$ in $\Omega \subset \mathbb{R}^2$
 $c \frac{\partial u}{\partial n} + \sigma u = g$ on Γ
(*)

- Data: choose $a_{id} \ge 0$ and compute (FE) solution $u(a_{id})$ to (*)
- Reconstruction: estimate $a \ge 0$ from $u_d = (1 + \varepsilon \delta)u(a_{id})|_{\Gamma}$ with random $|\varepsilon| \le 1$ and factor $\delta = 5\%$

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References	
Nonlinear	ontimiza	ation					

• Constrained optimization: $\tilde{\kappa}_i = \kappa_i |\Omega_i|$

min
$$J(a, u) = \int_{\Gamma} \alpha |u - u_d|^2 ds + \sum_{i=1}^{3} \tilde{\kappa}_i |a_i|^2$$
 s.t. (a, u) solves PDE & $a \ge 0$

• Relaxation of the inequality:

$$\min J_{\lambda}^{\varrho}(a, u) = J(a, u) + \frac{1}{\varrho} \max \left\{ 0, \lambda + \varrho(0 - a) \right\}^2 \text{ s.t. } (a, u) \text{ solves PDE}$$

- Outer loop: augmented Lagrangian method \rightarrow control of ϱ^k and λ^k
- Inner loop: globalized SQP algorithm with fixed (ϱ^k, λ^k) for

$$\min J_{\lambda^k}^{\varrho^k}(a, u) \quad \text{s.t.} \quad \left\{ \begin{array}{rrr} -c \,\Delta u + \beta \cdot \nabla u + 10u^3 + au &= f & \text{in } \Omega \\ c \, \frac{\partial u}{\partial n} + \sigma \, u &= g & \text{on } \Gamma \end{array} \right.$$

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
Deduced	ordor mo	doling				

Reduced-order modeling

• Model equations: $c = \frac{7}{10}$, $\beta(x) = \begin{pmatrix} 1 \\ x_1 \end{pmatrix}$, $f(x) = x_1$, $\sigma = \frac{3}{2}$, $g \equiv 1$

$$-c\,\Delta u + \beta \cdot \nabla u + 10u^3 + au = f \qquad \text{in } \Omega \subset \mathbb{R}^2$$
$$c\,\frac{\partial u}{\partial n} + \sigma \, u = g \qquad \text{on } \Gamma$$

- Snapshots: (FE) solutions $\{u_j\}_{j=1}^n$ for *n* different a_j
- Parameter grid for a_j: interpolation grid [Maday, Patera, Nguyen,...]
- POD basis of rank $\ell = 8$:

$$\min \sum_{j=1}^{n} \alpha_{j} \left\| u_{j} - \sum_{i=1}^{\ell} \left\langle u_{j}, \psi_{i} \right\rangle \psi_{i} \right\|^{2} \quad \text{s.t.} \quad \int_{\Omega} \psi_{i} \psi_{j} \, \mathrm{d}x = \delta_{ij} \quad (\mathbf{P}^{\ell})$$

• Solution to (\mathbf{P}^{ℓ}) : correlation matrix $K_{ij} = \int_{\Omega} u_i u_j \, dx$

$$K\mathbf{v}_i = \lambda_i \mathbf{v}_i, \quad \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_\ell, \quad \psi_i = \frac{1}{\sqrt{\lambda_i}} \sum_{j=1}^n \alpha_j (\mathbf{v}_i)_j u_j$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References

POD computation

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Motivation Outline Nonlinear heat equation Parameter Id. A-posteriori error SOF References Choice for the regularization parameter $\kappa = (\kappa_1, \kappa_2, \kappa_3)$

- Initialization: choose POD basis $\psi_1, \ldots, \psi_\ell$
- Bilevel optimization problem:

$$\begin{split} \min_{\kappa_a \le \kappa \le \kappa_b} J(\kappa) &= \alpha \int_{\Gamma} |u_{\kappa}^{\ell} - u_d|^2 \, \mathrm{d}s \\ \text{s.t.} \ (a_{\kappa}^{\ell}, u_{\kappa}^{\ell}) \text{ suboptimal POD solution for} \\ \begin{cases} \min_{(a,u)} J_{\kappa}(a, u) &= \alpha \int_{\Gamma} |u - u_d|^2 \, \mathrm{d}s + \sum_{i=1}^{3} \kappa_i \frac{|\Omega_i|}{2} |a_i|^2 \\ \text{s.t.} \ a \ge 0 \text{ and} \\ -c \, \Delta u + \beta \cdot \nabla u + 10u^3 + au &= f \quad \text{in } \Omega \subset \mathbb{R}^2 \\ c \frac{\partial u}{\partial a} + \sigma u &= g \quad \text{on } \Gamma \end{split}$$

- Outer loop: e.g., fmincon from MATLAB
- Inner loop: (fast) optimization method based on POD

- 4 回 2 - 4 □ 2 - 4 □

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References	
Numeric	al results						

- Data: $a_{id} = (6, 7, 8)$, 5% noise
- Starting values: $\kappa^0 = 10^{-4} \cdot (1, 1, 1)$
- Optimal value: $\kappa^* = 10^{-4} \cdot (0.6154, 4.438, 3.221)$
- Results: 1417 FE dof

		rel. error in a
POD, $\ell = 8$	κ^*	1.7%
	$\kappa=\kappa^*/2$	1.9%
	$\kappa = 2\kappa^*$	1.9%
	$\kappa = 10^{-12}$	2.3%
FE	κ^*	1.2%

• CPU time: FE optimization \sim bilevel optimization

• Optimal control problem:

$$\min J(y, u) = \frac{1}{2} \|y(T) - z\|_{H}^{2} + \frac{\kappa}{2} \int_{0}^{T} u(t)^{T} \mathbf{R} u(t) dt$$

s.t. $y_{t}(t) + \mathcal{A} y(t) = \mathcal{B} u(t) + f(t) \text{ in } [0, T] \text{ and } y(0) = y_{\circ}$
 $u \in U_{ad} = \{ u \in L^{2}(0, T) | u_{a} \le u \le u_{b} \text{ in } [0, T] \},$

- *H*, *V* Hilbert spaces, $V \hookrightarrow H = H' \hookrightarrow V'$ (e.g., $H = L^2$, $V = H^1$)
- $\mathbf{R} \in \mathbb{R}^{m \times m}$ with $\mathbf{R} \succ 0$, $z \in H$, $\kappa > 0$
- $a: V \times V \to \mathbb{R}$ bounded, symmetric, coercive $\mathcal{A}: V \to V'$ with $\langle \mathcal{A}\phi, \varphi \rangle_{V', V} = a(\phi, \varphi)$ for all $\phi, \varphi \in V$
- $\mathcal{B}: L^2(0,T) \rightarrow L^2(0,T;V'), y_o \in H$

イロン イヨン イヨン ・ヨン

-2

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
Optimalit	v conditic	ons				

- Optimal solution: (y^*, u^*)
- Adjoint equations:

$$-
ho^*(t)+\mathcal{A}
ho^*(t)=0$$
 in $[0,T]$ and $ho^*(T)=z-y^*(T)$

• Variational inequality:

$$\int_0^T \big(\kappa u^* - \mathcal{B}^* p^*\big)(u - u^*) \,\mathrm{d}t \geq 0 \quad \text{for all } u \in U_{ad}$$

with adjoint $\mathcal{B}^{\star}: L^2(0, T; V) \to L^2(0, T)$

- Goal: estimate $\|u^* u^\ell\|$ for suboptimal $u^\ell \in U_{ad}$
- Idea: there exists $\zeta^\ell \in L^2(0, \mathcal{T})$ satisfying

$$\int_0^T \big(\kappa u^\ell - \mathcal{B}^\star p^\ell + \zeta^\ell\big)(u - u^\ell) \,\mathrm{d}t \ge 0 \quad \text{for all } u \in U_{ac}$$

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
Error esti	mate					

• Associated state and dual variables: u^{ℓ} known

$$y_t^{\ell}(t) + Ay^{\ell}(t) = Bu^{\ell}(t) + f(t) \text{ in } [0, T], \quad y^{\ell}(0) = y_{\circ}$$
$$-p_t^{\ell}(t) + Ap^{\ell}(t) = 0 \text{ in } [0, T], \quad p^{\ell}(T) = z - y^{\ell}(T)$$

• Modified variational inequality: $\zeta^{\ell} \in L^2(0, T)$ satisfies

$$\int_0^T \big(\kappa u^\ell - \mathcal{B}^\star p^\ell + \zeta^\ell\big)(u - u^\ell) \,\mathrm{d}t \geq 0 \quad \text{for all } u \in U_{ad}$$

- Error estimate: $||u^* u^{\ell}|| \le \frac{1}{\kappa} ||\zeta^{\ell}|| \to 0$ for $\ell \to \infty$ \to choose ℓ such that $||\zeta^{\ell}|| < \text{TOL}$
- Choice for ζ^{ℓ} : explicit formula

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References		
Numerical example 1								

• Optimal control problem:

$$\min \frac{1}{2} \int_{\Omega} |y(T, x) - 20|^2 dx + \frac{5}{2000} \int_{0}^{T} |u(t)|^2 dt$$

s.t.
$$\begin{cases} y_t - \Delta y = 0 & \text{in } \Omega = (0, 1)^2 \subset \mathbb{R}^2 \\ \frac{\partial y}{\partial n} = 0 & \text{on } \Gamma_N = \{(x_1, x_2) \mid x_1 \in \{0, 1\} \text{ and } x_2 \in [0, 1]\} \\ \frac{\partial y}{\partial n} = u(t)b & \text{on } \Gamma \setminus \Gamma_N = \{(x_1, x_2) \mid x_1 \in (0, 1) \text{ and } x_2 \in \{0, 1\}\} \\ -6 & \leq u \leq 1 & \text{in } [0, T] \end{cases}$$

with $b(t, x_1, x_2) = e^{-(x_1 - 0.7\cos(2\pi t))^2 - (x_2 - 0.7\sin(2\pi t))^2}$

- Optimization method: primal-dual active set strategy
- Discretization: implicit Euler, 1600 FE dofs

伺 と く ヨ と く ヨ と

SOF

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

Numerical example – 2

Outline

l	$\ u^* - u^\ell\ $	$\kappa^{-1}\ \zeta^\ell\ $
2	0.079670	3.361904
3	0.016831	0.065327
4	0.001876	0.002951
5	0.000943	0.002229
6	0.000937	0.002213

FE optimizer	1611 s
Snapshot generation	8 s
POD computation ($\ell = 10$)	5 s
ROM $(\ell = 6)$	$\ll 1~{ m s}$
POD optimizer ($\ell = 6$)	3 s
Computation of ζ^{ℓ}	18 s

• Example: start with $\ell = 2$ and stop if $\kappa^{-1} \| \zeta^{\ell} \|_{L^2} < 10^{-2} \longrightarrow 50$ s

Motivation Outline Nonlinear heat equation Parameter Id. A-posteriori error SOF References Linear-quadratic-regulator (LQR) design

• Linear dynamical system in \mathbb{R}^{ℓ} :

$$\dot{x}(t)=Ax(t)+Bu(t) ext{ for } t>0, \quad x(0)=x_{\circ}$$

with state $x(t) \in \mathbb{R}^{\ell}$, control $u(t) \in \mathbb{R}^{n_u}$ and $A \in \mathbb{R}^{\ell \times \ell}$, $B \in \mathbb{R}^{\ell \times n_u}$

- Quadratic cost: $J(x, u) = \int_0^\infty x(t)^T Q x(t) + u(t)^T R u(t) dt$ with $Q \in \mathbb{R}^{\ell \times \ell}$, $Q \succ 0$ and $R \in \mathbb{R}^{n_u \times n_u}$, $R \succ 0$
- Goal: (full state) feedback law u(t) = Fx(t) with $F \in \mathbb{R}^{n_u \times \ell}$
- Solution: $F = -R^{-1}B^T P$ with $P = P^T \in \mathbb{R}^{\ell \times \ell}$

$$A^T P + PA + Q - PBR^{-1}B^T P = 0$$
 (Matrix Riccati)

・ロン ・回と ・ヨン ・ヨン

• Problem: often only partial state measurement available

Motivation Outline Nonlinear heat equation Parameter Id. A-posteriori error SOF References \mathcal{H}_2 static output feedback (SOF) design

• Linear dynamical system in \mathbb{R}^{ℓ} :

$$\dot{x}(t) = Ax(t) + Bu(t) + B_1w(t) \text{ for } t > 0, \qquad x(0) = x_0$$

 $y(t) = Cx(t)$

with $A \in \mathbb{R}^{\ell imes \ell}$, $B \in \mathbb{R}^{\ell imes n_u}$, $B_1 \in \mathbb{R}^{\ell imes n_w}$, $C \in \mathbb{R}^{n_y imes \ell}$ and

$$\mathbf{x}(t)\in \mathbb{R}^\ell, \quad u(t)\in \mathbb{R}^{n_u}, \quad \mathbf{y}(t)\in \mathbb{R}^{n_y}, \quad w(t)\in \mathbb{R}^{n_w}$$

- Feedback law: u(t) = Fy(t) with $F \in \mathbb{R}^{n_u \times n_y}$
- Solution: F given by nonconvex semidefinite programming

min trace $(LB_1B_1^T)$ s.t. $H(F, L, V) = 0 \& V \succ 0 \in \mathbb{R}^{\ell \times \ell}$ (SDP)

with
$$H(F, L, V) = \begin{pmatrix} A(F)^T L + LA(F) + C(F)^T C(F) \\ A(F)^T V + VA(F) + I \end{pmatrix} \in \mathbb{R}^{2\ell \times \ell}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● □ ● ○○○

Motivation

Nonlinear heat equation

Parameter Id.

A-posteriori error

SOF References

SOF controller design [Leibfritz/V.]

Outline

$$\begin{aligned} v_t &= \kappa \Delta v + av \\ -\lambda \frac{\partial v}{\partial n} &= 0 \\ -\lambda \frac{\partial v}{\partial n} &= \alpha_4 (v - c_4 + u_4(t)) + \varepsilon_4 \sigma (v^4 - c_4^4) \\ -\lambda \frac{\partial v}{\partial n} &= \hat{\alpha} (v - \hat{c} + \hat{u}(t)) \\ v(0) &= v_{\circ} \end{aligned}$$

Domain Ω and boundary parts Γ_i , i=1,...,8 \ _{г.,} 0.9 0.8 first control input 0.7 0.6 v-axis 0.4 0.3 0.2 second control input Г 0.1 0 0.2 0.4 0.8 0.6 x-axis

 $\begin{array}{l} \mbox{in } \Omega \times (0,T) \\ \mbox{on } \Gamma_j \times (0,T), \ j{=}1,2,3,5 \\ \mbox{on } \Gamma_4 \times (0,T) \\ \mbox{on } \Gamma_j \times (0,T), \ j{=}6,7,8 \\ \mbox{in } \Omega \end{array}$

Control:
$$u(t) \in \mathbb{R}^2$$
, $n_u = 2$
Measurement: $y(t) \in \mathbb{R}^3$, $n_y = 3$
 $y_1(t) = v(0, 1; t)$
 $y_2(t) = v(0, 0; t)$
 $y_3(t) = v(2/3, 1/2; t)$
Goal: $u(t) = Fy(t)$, $F \in \mathbb{R}^{2 \times 3}$

< 🗇 >

< ∃⇒

Variational form for nonlinear heat equation

• Nonlinear heat equation:

$$\begin{split} v_t = &\kappa \Delta v + av & \text{in } \Omega \times (0, T) \\ -\lambda \frac{\partial v}{\partial n} = & 0 & \text{on } \Gamma_j \times (0, T), \ j = 1, 2, 3, 5 \\ -\lambda \frac{\partial v}{\partial n} = &\alpha_4 (v - c_4 + u_4(t)) + \varepsilon_4 \sigma (v^4 - c_4^4) & \text{on } \Gamma_4 \times (0, T) \\ -\lambda \frac{\partial v}{\partial n} = &\hat{\alpha} (v - \hat{c} + \hat{u}(t)) & \text{on } \Gamma_j \times (0, T), \ j = 6, 7, 8 \end{split}$$

• Variational form: for all $\varphi \in H^1(\Omega)$

$$\begin{split} &\int_{\Omega} v_t(t)\varphi + \kappa \nabla v(t) \cdot \nabla \varphi - av(t)\varphi \, \mathrm{d}x = \kappa \int_{\Gamma} \frac{\partial v(t)}{\partial n} \varphi \, \mathrm{d}s = \frac{\kappa}{\lambda} \int_{\Gamma} \lambda \frac{\partial v(t)}{\partial n} \varphi \, \mathrm{d}s \\ &= \frac{\kappa}{\lambda} \int_{\Gamma_4} \left(\alpha_4 c_4 + \varepsilon_4 \sigma c_4^4 \right) \varphi - \left(\alpha_4 v(t) + \varepsilon_4 \sigma v^4(t) \right) \varphi - \alpha_4 u_4(t) \varphi \, \mathrm{d}s \\ &+ \frac{\kappa}{\lambda} \int_{\Gamma_6 \cup \Gamma_7 \cup \Gamma_8} \hat{\alpha} \hat{c} \varphi - \hat{\alpha} v(t) \varphi - \hat{\alpha} \hat{u}(t) \varphi \, \mathrm{d}s \end{split}$$

イロト イヨト イヨト

• Dynamical system in \mathbb{R}^N : spatial discretization (e.g., FE or FD) and linearization

$$\dot{x}(t) = Ax(t) + Bu(t) + B_1w(t) \text{ for } t > 0, \qquad x(0) = x_0$$

 $y(t) = Cx(t)$

- Goal: feedback law u(t) = Fy(t) with $F \in \mathbb{R}^{2 \times 3}$
- Solution: F given by

min trace $(LB_1B_1^T)$ s.t. $H(F, L, V) = 0 \& V \succ 0$ (SDP)

with
$$H(F, L, V) = \begin{pmatrix} A(F)^T L + LA(F) + C(F)^T C(F) \\ A(F)^T V + VA(F) + I \end{pmatrix} \in \mathbb{R}^{2N \times N}$$

• N = # FE or FD unknowns (!)

・ロト ・同ト ・ヨト ・ヨト

 Compute solution y of nonlinear heat quation with FE or FD at time instances 0 ≤ t₁ < ... < t_n ≤ T

• Snapshots:
$$y_j = y(t_j)$$
 for $i = 1, ..., n$

• POD:
$$\mathcal{R}^n \psi_i = \lambda_i \psi_i$$
 with $\mathcal{R}^n \psi_i = \sum_{j=1}^n \alpha_j \int_{\Omega} \psi_i y_j \, \mathrm{d} x \, y_j$

• ROM: Galerkin ansatz for nonlinear heat equation with ψ_1,\ldots,ψ_ℓ

$$\begin{aligned} \dot{x}(t) &= A^{\ell}x(t) + G^{\ell}(x(t)) + B^{\ell}u(t) + B_{1}^{\ell}w(t), \quad x(0) = x_{\circ}^{\ell} \\ y(t) &= C^{\ell}x(t) \\ u(t) &= F^{\ell}y(t), \quad F^{\ell} \in \mathbb{R}^{2 \times 3} \end{aligned}$$

イロト イポト イヨト イヨト

Motivation	Outline	Nonlinear heat equation	Parameter Id.	A-posteriori error	SOF	References
Feedback	synthesis					

- Reduction in the variable x, not in y and u
- Linearize and set up the SDP problem $\Rightarrow \ell$ is the size of the SDP problem $\Rightarrow 5 = \ell \ll 3796$ FD unknowns
- Solve SDP by Interior-point trust-region method [Leibfritz/Mostafa]
- Plug in the computed feedback law into the FD modell (closed-loop)

$$\dot{x}(t) = Ax(t) + G(x(t)) + B \underbrace{F^{\ell}Cx(t)}_{=F^{\ell}y(t)=u(t)} + B_1w(t), \ x(0) = x_{\circ}$$
$$v(t) = Cx(t)$$

$$u(t) = F^{\ell}y(t) = F^{\ell}Cx(t)$$

SOF

Numerical example (Part 3)

Outline

Motivation

Outline

<ロ> (四) (四) (三) (三)

References: suboptimal control & parameter identification

- Diwoky & V.: Nonlinear boundary control for the heat equation utilizing proper orthogonal decomposition, International Series of Numerical Mathematics, 138:73-87, 2001
- Hinze & V.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, to appear in Computational Optimization and Applications, 2007
- Hinze & V.: Proper Orthogonal Decomposition Surrogate Models for Nonlinear Dynamical Systems: Error Estimates and Suboptimal Control, Lecture Notes in Computational Science and Engineering, 45:261-306, 2005
- Kahlbacher & V.: Model reduction by proper orthogonal decomposition for estimation of scalar parameters in elliptic PDEs, in Proceedings of ECCOMAS CFD, 2006
- Kunisch & V.: Proper orthogonal decomposition for optimality systems, to appear in M²AN, 2007

A-posteriori error References Motivation Outline Nonlinear heat equation Parameter Id.

References: feedback strategies

- Kunisch & V.: Control of Burgers' equation by a reduced order approach using proper orthogonal decomposition, JOTA, 102:345-371.1999
- Leibfritz & V.: Numerical feedback controller design for PDE systems using model reduction: techniques and case studies, Proceedings, Santa Fe, USA, 2004
- Leibfritz & V.: Reduced order output feedback control design for PDE systems using proper orthogonal decomposition and nonlinear semidefinite programming, Linear Algebra and Its Applications, 415:542-757, 2006
- Kunisch, V. & Xie: HJB-POD based feedback design for the optimal control of evolution problems, SIADS, 3:701-722, 2004

(D) (A) (A) (A) (A)