Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

Error estimates for POD Galerkin schemes

Stefan Volkwein

Institute for Mathematics and Scientific Computing University of Graz, Austria

DISC Summerschool 2005

University of Graz

Stefan Volkwein

< 口 > < 🗇

Outline of the talk

- Continuous POD
- Numerical example: heat equation
- Snapshot POD
- Numerical example: Laser surface hardening of steel

Stefan Volkwein Error estimates for POD Galerk<u>in schemes</u>

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

Abstract linear evolution problem

- ▶ *H*, *V* Hilbert spaces, $V \hookrightarrow H = H' \hookrightarrow V'$ (e.g., $H = L^2$, $V = H^1$)
- ▶ Symmetric bilinear form $a(\varphi, \psi) = \langle \varphi, \psi \rangle_V$ for $\varphi, \psi \in V$
- Evolution problem:

$$\frac{\mathrm{d}}{\mathrm{d}t} \langle y(t), \varphi \rangle_{H} + a(y(t), \varphi) = \langle f(t), \varphi \rangle_{H} \quad \text{for } t \in [0, T], \ \varphi \in V$$
$$\langle y(0), \varphi \rangle_{H} = \langle y_{\circ}, \varphi \rangle_{H} \quad \text{for } \varphi \in V$$

with $y_{\circ} \in H$ and $f \in L^2(0, T; H)$

• Unique solution y with $||y|| \leq C(||y_0|| + ||f||)$

UNI GRAZ

University of Graz

Stefan Volkwein

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example
Continuou	s POD			

- Topology: X = H or X = V
- ▶ Snapshot ensemble: $\mathcal{V} = \{y(t) \mid t \in [0, T]\} \subset X$, $d = \dim \mathcal{V} \le \infty$
- EVD for linear and symmetric \mathcal{R} in X:

$$\mathcal{R}u_i = \int_0^T \langle u_i, y(t) \rangle_X y(t) \, \mathrm{d}t = \sigma_i^2 u_i \qquad (YY^T u_i = \sigma_i^2 u_i)$$

and set $\lambda_i^\infty = \sigma_i^2$, $\psi_i^\infty = u_i$, $1 \le i \le \ell$

• Error formula for the POD basis of rank ℓ :

$$\int_0^T \left\| y(t) - \sum_{i=1}^{\ell} \langle y(t), \psi_i^{\infty} \rangle_X \psi_i^{\infty} \right\|_X^2 \mathrm{d}t = \sum_{i=\ell+1}^{\infty} \lambda_i^{\infty}$$

University of Graz

Stefan Volkwein

POD Galerkin scheme for the state equation

- ▶ POD ansatz space: $V^{\ell} = \text{span} \{\psi_1, \dots, \psi_{\ell}\} \subset V$
- ► POD Galerkin scheme:

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}t} \langle y^{\ell}(t), \psi \rangle_{H} + \mathbf{a}(y^{\ell}(t), \psi) &= \langle f(t), \psi \rangle_{H} \quad \text{for } t \in [0, T], \ \psi \in V^{\ell} \\ \langle y^{\ell}(0), \psi \rangle_{H} &= \langle y_{\circ}, \psi \rangle_{H} \quad \text{ for } \psi \in V^{\ell} \end{split}$$

- Unique solution y^{ℓ} with $||y^{\ell}|| \leq C(||y_{\circ}|| + ||f||)$
- Goal: Estimation of

$$\sup_{t \in [0,T]} \|y^{\ell}(t) - y(t)\|_{H} + \int_{0}^{T} \|y^{\ell}(t) - y(t)\|_{V}^{2} dt$$

in terms of
$$\sum_{i=\ell+1}^{\infty} \lambda_i^{\infty}$$

Stefan Volkwein

Error estimates for POD Galerkin schemes

▲□▶ ▲圖▶ ▲ 画

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example	
Estimatio	n of POD error (Part 1)			
• Orthogonal projection: $\mathcal{P}^{\ell}\varphi = \sum_{i=1}^{\ell} \langle \varphi, \psi_i^{\infty} \rangle_V \psi_i^{\infty}$ for $\varphi \in V$					
	$\Rightarrow \mathbf{a}(\mathcal{P}^{\ell}\varphi,\psi) = \mathbf{a}(\varphi,\psi)$) for $arphi \in {\it V}$, $\psi \in$	V^{ℓ} (Ritz	projector)	
	$\Rightarrow y(t) - \sum_{i=1}^{\ell} \langle y(t), \psi_i^{\alpha} \rangle$	$\langle \psi_i^{\infty} = y(t) - \eta$	$\mathcal{P}^{\ell}y(t)$ for $t\in [0,$	<i>T</i>]	
		~			

$$\Rightarrow \int_0^T \left\| y(t) - \mathcal{P}^{\ell} y(t) \right\|_V^2 \mathrm{d}t = \sum_{i=\ell+1}^\infty \lambda_i^\infty$$

► Set
$$\vartheta(t) = \mathcal{P}^{\ell} y(t) - y^{\ell}(t) \in V^{\ell}$$
, $\varrho(t) = y(t) - \mathcal{P}^{\ell} y(t) \in (V^{\ell})^{\perp}$
 $y(t) - y^{\ell}(t) = y(t) - \mathcal{P}^{\ell} y(t) + \mathcal{P}^{\ell} y(t) - y^{\ell}(t) = \varrho(t) + \vartheta(t)$

Error formula:

$$\int_0^T \|\varrho(t)\|_X^2 \, \mathrm{d}t = \sum_{i=\ell+1}^\infty \lambda_i^\infty$$

Image: A math a math

• Topology:
$$X = V$$
, at least

Stefan Volkwein

Error estimates for POD Galerkin schemes

University of Graz

Estimation of POD error (Part 2)

•
$$\vartheta(t) = \mathcal{P}^{\ell} y(t) - y^{\ell}(t)$$
 and $a(\mathcal{P}^{\ell} \varphi, \psi) = a(\varphi, \psi)$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\langle \vartheta^{\ell}(t), \psi \right\rangle_{H} + \mathsf{a}(\vartheta^{\ell}(t), \psi) = \left\langle y_{t}(t) - \mathcal{P}^{\ell} y_{t}(t), \psi \right\rangle_{H} \quad \text{for } \psi \in V^{\ell}$$

•
$$\psi = \vartheta(t) \in V^{\ell}$$
 and $a(\varphi, \varphi) = \|\varphi\|_V^2$ for $\varphi \in V$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left\| \vartheta(t) \right\|_{H}^{2} + \left\| \vartheta(t) \right\|_{V}^{2} \leq C \left\| y_{t}(t) - \mathcal{P}^{\ell} y_{t}(t) \right\|_{H}^{2}$$

• Integrating over
$$(0, t)$$
, $t \in [0, T]$

$$\|\vartheta(t)\|_{H}^{2}+\int_{0}^{t}\|\vartheta(s)\|_{V}^{2}\mathrm{d}s\leq\|\vartheta(0)\|_{H}^{2}+\int_{0}^{T}\|\underbrace{y_{t}(s)-\mathcal{P}^{\ell}y_{t}(s)}_{=\varrho(s)}\|_{H}^{2}\mathrm{d}s$$

• Recall:
$$y(t) - y^{\ell}(t) = \varrho(t) + \vartheta(t)$$

Image: A math a math

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example
Estimatio	on of POD error (Part 3	3)		
•	New ansatz for POD:	$X = V, \mathcal{P}^{\ell} \varphi = \sum_{i=1}^{\ell}$	$\sum_{i} \langle \varphi, \psi_i^{\infty} \rangle_V \psi_i^{\infty}$	
	$\min\int_0^T \ y(t)-\mathcal{P}^\ell y(t)-\mathcal{P}^\ell y(t)\ $	$\left\ \right\ _{V}^{2} + \left\ y_{t}(t) - \mathcal{P}^{\ell} y \right\ $	$\left\ t_{t}(t) \right\ _{V}^{2} \mathrm{d}t \mathrm{s.t.}$	$\left\langle \psi_{i},\psi_{j} ight angle _{V}=\delta_{ij}$
•	Error formula: $\varrho(t) =$	$y(t) - \mathcal{P}^\ell y(t)$		
	$\int_0^T \ \varrho(t)\ _V^2 + \ $	$ \varrho_t(t)\ _V^2 \mathrm{d}t = \ \varrho(t)\ _V$	$\ ^{2}_{H^{1}(0,T;V)} = \sum_{i=\ell}^{\infty}$	$\sum_{\ell=1}^{2}\lambda_{i}^{\infty}$
•	Consequences: $\vartheta(t) =$	$= \mathcal{P}^\ell y(t) - y^\ell(t)$		
	$\sup_{t\in [0,T]} \left\ \varrho(t) \right\ _{H}^{2} +$	$+\int_0^T \ \varrho(t)\ _V^2 \mathrm{d}t \leq$	$C\sum_{i=\ell+1}^{\infty}\lambda_i^\infty$	_
	$\sup_{t\in[0,T]}\left\ \vartheta(t)\right\ _{H}^{2}+$	$\int_0^T \left\ \vartheta(t)\right\ _V^2 \mathrm{d}t \leq$	$\left\ \vartheta(0)\right\ _{H}^{2}+C\sum_{i=1}^{\infty}$	$\sum_{\ell=1}^{\infty} \lambda_i^{\infty} \qquad \qquad$
Stefan Volkw	ein			University of Graz

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

Estimation of POD error (Part 4)

• Recall $y(t) - y^{\ell}(t) = \varrho(t) + \vartheta(t)$ and triangle inequality

$$\sup_{t \in [0,T]} \left\| y^{\ell}(t) - y(t) \right\|_{H}^{2} + \int_{0}^{T} \left\| y^{\ell}(t) - y(t) \right\|_{V}^{2} \mathrm{d}t$$
$$\leq \underbrace{\left\| y^{\ell}(0) - \mathcal{P}^{\ell} y_{\circ} \right\|_{H}^{2}}_{\text{error in initial data}} + \underbrace{C \sum_{i=\ell+1}^{\infty} \lambda_{i}^{\infty}}_{\text{error in POD}}$$

- Assumptions: POD with topology X = V and time derivatives
- ► FE: estimates for function classes, e.g., $V = H^1(\Omega)$ ⇒ $||y_t(t) - R^h y_t(t)|| \sim h^p$ for any $y_t(t) \in V$, $t \in [0, T]$
- POD: estimates only for included snapshots

・ロト ・日子・ ・ヨト

Error estimates for POD Galerkin schemes

Stefan Volkwein

Empirical order of decay (EOD) [Hinze/V.]

POD error: $y_{\circ} = 0$

$$\sup_{t \in [0,T]} \|y^{\ell}(t) - y(t)\|_{H}^{2} + \int_{0}^{T} \|y^{\ell}(t) - y(t)\|_{V}^{2} dt \sim \sum_{i=\ell+1}^{\infty} \lambda_{i}^{\infty}$$

• Ansatz for the eigenvalues: $\lambda_i^{\infty} = \lambda_1^{\infty} e^{-\alpha(i-1)}$ for $i \ge 1$

• Goal: estimation of α based on the POD error

$$\begin{array}{l} \left\| \frac{y^{\ell} - y \right\|^2}{\|y^{\ell+1} - y\|^2} \sim \frac{\sum\limits_{i=\ell+1}^{\infty} \lambda_i}{\sum\limits_{i=\ell+2}^{\infty} \lambda_i} = \frac{\sum\limits_{i=\ell+1}^{\infty} e^{-\alpha(i-1)}}{\sum\limits_{i=\ell+2}^{\infty} e^{-\alpha(i-1)}} = \frac{\sum\limits_{i=0}^{\infty} \left(e^{-\alpha} \right)^i}{\sum\limits_{i=0}^{\infty} \left(e^{-\alpha} \right)^i - 1} = e^{\alpha} \\ \end{array} \\ \begin{array}{l} \text{Set: } Q(\ell) = \ln \frac{\|y^{\ell} - y\|^2}{\|y^{\ell+1} - y\|^2} \sim \alpha \\ \end{array} \\ \begin{array}{l} \text{EOD} = \frac{1}{\ell_{\max}} \sum\limits_{\ell=1}^{\ell_{\max}} Q(\ell) \text{ so that } EOD \approx \alpha \end{array} \end{array}$$

UNI GRAZ

University of Graz

・ロト ・回ト ・ヨト

Stefan Volkwein

University of Graz

Numerical example (Part 1)

$$y_t - \Delta y = 0 \qquad \text{in } Q = (0, 1) \times \Omega$$
$$\frac{\partial y}{\partial n} = 0 \qquad \text{on } \Sigma_1 = (0, 1) \times \Gamma_1$$
$$\frac{\partial y}{\partial n} = q \qquad \text{on } \Sigma_2 = (0, 1) \times \Gamma_2$$
$$y(0) = 0 \qquad \text{on } \Omega \subset \mathbb{R}^2$$

•
$$\Gamma_1 = \{ \mathbf{x} = (x, y) \in \partial\Omega \mid ||\mathbf{x}|| = 1 \}, \Gamma_2 = \partial\Omega \setminus \Gamma_1$$

• $q(t, \mathbf{x}) = e^{-(x-0.7\cos(2\pi t))^2 - (y-0.7\sin(2\pi t))^2}$

•
$$m = 868$$
 finite elements, $\delta t = 1/499$

•
$$y^m$$
 FE solution, $\overline{\partial}_t y^m(t_j) = (y^m(t_j) - y^m(t_{j-1}))/\delta t$

- Snapshot ensemble: $\mathcal{V} = \operatorname{span}\left\{\{y^m(t_j)\}_{j=1}^n, \{\overline{\partial}_t y^m(t_j)\}_{j=2}^n\right\}$
- EVD for linear and symmetric \mathcal{R}^n in X:

$$\mathcal{R}^{n}u_{i} = \sum_{j=1}^{n} \alpha_{j} \langle u_{i}, y^{m}(t_{j}) \rangle_{X} y^{m}(t_{j}) + \sum_{j=2}^{n} \alpha_{j} \langle u_{i}, \overline{\partial}_{t} y^{m}(t_{j}) \rangle_{X} \overline{\partial}_{t} y^{m}(t_{j}) = \sigma_{i}^{2} u_{i}$$

and set
$$\lambda_i = \sigma_i^2$$
, $\psi_i = u_i$

Stefan Volkwein

Numerical example (Part 2)

CPU times: 2GHz desktop PC (Linux)

Computing the FE mesh and matrices	18.0 seconds
FE solve	5.0 seconds
Computing 15 POD basis functions	36.9 seconds
Computing the reduced-order model, $\ell=15$	< 0.1 seconds
POD solve, $\ell=15$	< 0.1 seconds

Firror:
$$\|\varphi\|_{L^2(0,T;X)} = \sqrt{\int_0^T \|\varphi(t)\|_X^2} \mathrm{d}t$$

X	ensemble	$\ y^h - y^\ell\ _{L^2(0,T;H^1(\Omega))}$	$\ y^h - y^\ell\ _{L^2(0,T;L^2(\Omega))}$
L ²	no DQ	0.0104	0.0012
H^1	no DQ	0.0064	0.0007
L ²	DQ	0.0064	0.0007
H^1	DQ	0.0060	0.0006

Stefan Volkwein

University of Graz

University of Graz

Numerical example (Part 3)

Stefan Volkwein

Snapshot POD for dynamical systems

► Dynamical system (e.g., Navier Stokes) in a Hilbert space *H*:

 $\dot{y}(t) + Ay(t) + B(y(t)) = f(t) ext{ for } t \in (0, T) ext{ and } y(0) = y_{\circ}$

• $V \subset H$ Hilbert space with $V \hookrightarrow H = H' \hookrightarrow V'$, X = H or X = V

- ► Time grid: $0 \le t_1 < t_2 < \ldots t_n \le T$, $\delta t_j = t_j t_{j-1}$ for $2 \le j \le n$
- ► Snapshots: $y_j = y(t_j)$, $1 \le j \le n$ and $\overline{\partial}_t y_j = \frac{y_j y_{j-1}}{\delta t_j}$, $2 \le j \le n$

► Snapshot ensemble: $\mathcal{V} = \text{span} \{y_1, \dots, y_n, \overline{\partial}_t y_2, \dots, \overline{\partial}_t y_n\},\ d = \dim \mathcal{V}$

- Orthogonal decomposition in X: $\mathcal{P}^{\ell}\varphi = \sum_{i=1}^{\ell} \langle \varphi, \psi_i \rangle_X \psi_i$ for $\varphi \in X$
- ▶ POD basis of rank $\ell < d$: with weights $\alpha_j \ge 0$

$$\min \sum_{j=1}^{n} \alpha_{j} \| y_{j} - \mathcal{P}^{\ell} y_{j} \|_{X}^{2} + \sum_{j=2}^{n} \alpha_{j} \| \overline{\partial}_{t} y_{j} - \mathcal{P}^{\ell} \overline{\partial}_{t} y_{j} \|_{X}^{2} \text{ s.t. } \langle \psi_{i}, \psi_{j} \rangle_{X} = \delta_{ij}$$

<ロト < 部ト < 注ト

University of Graz

Stefan Volkwein

Computation of the POD basis

• EVD for linear and symmetric \mathcal{R}^n in X:

$$\mathcal{R}^{n}u_{i} = \sum_{j=1}^{n} \alpha_{j} \langle u_{i}, y_{j} \rangle_{X} y_{j} + \sum_{j=2}^{n} \alpha_{j} \langle u_{i}, \overline{\partial}_{t} y_{j} \rangle_{X} \overline{\partial}_{t} y_{j} = \sigma_{i}^{2} u_{i}$$

and set $\lambda_i = \sigma_i^2$, $\psi_i = u_i$

• Error formula for the POD basis of rank ℓ :

$$\sum_{j=1}^{n} \alpha_{j} \left\| y_{j} - \mathcal{P}^{\ell} y_{j} \right\|_{X}^{2} + \sum_{j=2}^{n} \alpha_{j} \left\| \overline{\partial}_{t} y_{j} - \mathcal{P}^{\ell} \overline{\partial}_{t} y_{j} \right\|_{X}^{2} = \sum_{i=\ell+1}^{d} \lambda_{i}$$

► Trapezoidal weights: $\alpha_1 = \frac{\delta t_1}{2}$, $\alpha_j = \frac{\delta t_j + \delta t_{j+1}}{2}$, 1 < j < n, $\alpha_n = \frac{\delta t_n}{2}$ ⇒ Convergence to $\int_0^T \|y(t) - \mathcal{P}^\ell y(t)\|_X^2 + \|y_t(t) - \mathcal{P}^\ell y_t(t)\|_X^2 dt$

Stefan Volkwein

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

POD Galerkin scheme

- Time grid: $0 = \tau_0 < \ldots < \tau_N = T$ and $\delta \tau_j = \tau_j \tau_{j-1}$, $1 \le j \le N$
- Assumptions: $\Delta \tau / \delta \tau$ bounded, $\Delta t = O(\delta \tau)$ and $\Delta \tau = O(\delta t)$ with $\Delta \tau = \max \delta \tau_j$, $\delta \tau = \min \delta \tau_j$, $\Delta t = \max \delta t_j$, $\delta t = \min \delta t_j$

• Goal: Find
$$\{Y_j\}_{j=0}^N$$
 in $V^{\ell} = \text{span } \{\psi_1, \dots, \psi_{\ell}\}$

$$\begin{split} \langle \overline{\partial}_{\tau} Y_j + AY_j + B(Y_j), \psi \rangle_H &= \langle f(\tau_j), \psi \rangle_H \quad \text{for } \psi \in V^{\ell}, \ j = 1, \dots, N \\ \langle Y_0, \psi \rangle_H &= \langle y_o, \psi \rangle_H \quad \text{for } \psi \in V^{\ell} \end{split}$$

with $\overline{\partial}_{\tau} Y_j = \frac{Y_j - Y_{j-1}}{\Delta \tau_j}$ \Rightarrow low dimensional system

University of Graz

Stefan Volkwein

POD error estimate for Snapshot POD

► Goal: Estimation of

$$\sum_{j=0}^{N} \beta_{j} \|Y_{j} - y(\tau_{j})\|_{H}^{2} \approx \int_{0}^{T} \|Y(\tau) - y(\tau)\|_{H}^{2} d\tau$$

with
$$\beta_0 = \frac{\delta \tau_1}{2}$$
, $\beta_j = \frac{\delta \tau_j + \delta \tau_{j+1}}{2}$, $0 < j < N$, $\beta_N = \frac{\delta t_N}{2}$

• Theorem 1 [Kunisch/V.]: X = V, $\Delta \tau$ small, y sufficiently smooth

$$\sum_{j=0}^{N} \beta_{j} \left\| Y_{j} - y(\tau_{j}) \right\|_{H}^{2} \leq C \sum_{i=\ell+1}^{d} \left(\left| \langle \psi_{i}, y_{\circ} \rangle_{V} \right| + \lambda_{i} \right) + O\left(\Delta \tau \Delta t + (\Delta \tau)^{2} \right)$$

Image: A math the second se

University of Graz

with
$$\Delta \tau = \max \delta \tau_j$$
 and $\Delta t = \max \delta t_j$

Stefan Volkwein

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

Asymptotic error estimate

• Problem: $\lambda_i = \lambda_i^{(n)}, \ \psi_i = \psi_i^{(n)}$ depend on the snapshot grid $\{t_i\}_{j=1}^n$

$$\mathcal{R}^{n} = \sum_{j=1}^{n} \alpha_{j} \langle \bullet, y_{j} \rangle_{X} y_{j} + \sum_{j=2}^{n} \alpha_{j} \langle \bullet, \overline{\partial}_{t} y_{j} \rangle_{X} \overline{\partial}_{t} y_{j}$$

▶ Fix ℓ such that eigenvalues $\{\lambda_i^\infty\}_{i\in\mathbb{N}}$ and eigenfunctions $\{\psi_i^\infty\}_{i\in\mathbb{N}}$ of

$$\mathcal{R} = \int_0^T \langle \bullet, y(t) \rangle_V y(t) + \langle \bullet, y_t(t) \rangle_V y_t(t) \, \mathrm{d}t$$

satisfy $\lambda_\ell^\infty \neq \lambda_{\ell+1}^\infty$

Theorem 2 [Kunisch/V.]: X = V, $\Delta \tau$ small, y sufficiently smooth

$$\sum_{j=0}^{N} \beta_{j} \|Y_{j} - y(\tau_{j})\|_{H}^{2} \leq C \sum_{i=\ell+1}^{\infty} \left(|\langle \psi_{i}^{\infty}, y_{\circ} \rangle_{V}|^{2} + \lambda_{i}^{\infty} \right) + O((\Delta \tau)^{2})$$

< ロ > < 回 > < 回 > <</p>

University of Graz

Stefan Volkwein

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example
Sketch	of the proof			

► Theorem 1:

$$\sum_{j=0}^{N} \beta_{j} \left\| Y_{j} - y(\tau_{j}) \right\|_{H}^{2} \leq C \sum_{i=\ell+1}^{d} \left(\left| \langle \psi_{i}, y_{\circ} \rangle_{V} \right| + \lambda_{i} \right) + O\left(\Delta \tau \Delta t + (\Delta \tau)^{2} \right)$$

- Weights and smoothness of $y \Rightarrow \lim_{n \to \infty} ||\mathcal{R}_n \mathcal{R}|| = 0$
- perturbation theory for eigenvalues [Kato]
- ▶ Choose $n_{\circ} \in \mathbb{N}$ such that for all $n \ge n_{\circ}$

$$\begin{split} \sum_{i=\ell+1}^{d(n)} \lambda_i^{(n)} &\leq 2 \sum_{i=\ell+1}^{\infty} \lambda_i^{\infty} \\ \sum_{i=\ell+1}^{d(n)} \left| \langle \psi_i^{(n)}, y_{\circ} \rangle_V \right|^2 &\leq 2 \sum_{i=\ell+1}^{\infty} \left| \langle \psi_i^{\infty}, y_{\circ} \rangle_V \end{split}$$

University of Graz

Stefan Volkwein

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

Problem formulation

Laser surface hardening of steel [Hömberg/V.]:

Phase transition of steel:

< D > < B > <</p>

University of Graz

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

Model equations

Energy balance and Fourier's law:

$$\begin{cases} \varrho c_{\rho} \theta_{t} - k \Delta \theta &= \alpha u - \varrho L a_{t} & \text{in } Q = (0, T) \times \Omega \\ \frac{\partial \theta}{\partial n} &= 0 & \text{auf } \Sigma = (0, T) \times \partial \Omega \\ \theta(0, \cdot) &= \theta_{\circ} & \text{in } \Omega \subset \mathbb{R}^{d} \end{cases}$$

Phase transition of austenite:

$$\begin{cases} a_t = f(\theta, a) & \text{in } Q \\ a(0, \cdot) = 0 & \text{in } \Omega \end{cases}$$

• Intensity of the laser: $u = u(t) \in L^2(0, T)$

► Nonlinearity:
$$f_+(\theta, a) = \max \{a_{eq}(\theta) - a, 0\} / \tau(\theta), \tau(\theta) > 0$$

University of Graz

Stefan Volkwein

University of Graz

FE and POD temperatures at t = T

Stefan Volkwein

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example

POD error

► Measures for the error:

$$\Psi^{i} = \frac{\underset{0 \leq j \leq N}{\max} \|\theta^{i}_{\ell} - \theta^{j}_{FE}\|_{L^{\infty}(\Omega)}}{\underset{0 \leq j \leq N}{\max} \|\theta^{i}_{FE}\|_{L^{\infty}(\Omega)}} \quad \text{with} \quad \begin{cases} i = 1 & \text{POD with DQ} \\ i = 2 & \text{POD without DQ} \end{cases}$$

	$X = L^2(\Omega)$		$X = H^1(\Omega)$	
ℓ	Ψ^1	Ψ^2	Ψ^1	Ψ^2
10	24.1%	40.6%	21.0%	40.1%
25	1.6%	26.9%	4.0%	24.6%

• Heuristic:
$$\mathcal{E}(\ell) = \sum_{i=1}^{\ell} \lambda_i \Big/ \sum_{i=1}^{d} \lambda_i \cdot 100\% \ge 94\%$$

	$\ell = 10$	$\ell = 15$	$\ell = 20$	$\ell = 25$
$\mathcal{E}(\ell), X = L^2(\Omega)$	94.3	98.4	99.5	99.8
$\mathcal{E}(\ell), X = H^1(\Omega)$	77.7	87.4	92.5	95.7

Stefan Volkwein

University of Graz

э

・ロト ・日下・ ・ ヨト

Outline	Linear evolution problems	Numerical example	Snapshot POD	Numerical example
Reference	S			

- Maday et al., Yvon et al., Petzold et al.,...
- Kunisch & V.: Crank-Nicolson Galerkin Proper Orthogonal Decomposition Approximations for a General Equation in Fluid Dynamics, 18th GAMM Seminar, Leipzig, 97-114, 2002
- Hömberg & V.: Control of laser surface hardening by a reduced-order approach using proper orthogonal decomposition, Math. and Comp. Mod., 38:1003-1028, 2003
- Hinze & V.: Error estimates for abstract linear-quadratic optimal control problems using proper orthogonal decomposition, (will be) submitted

