

ulm universität **UUU**

Katharina Becker-Steinberger, Stefan Funken, Manuel Landsdorfer, Karsten Urban Institute of Numerical Mathematics Konstanz, 04.03.2010 Mathematical Modeling All Solid State Batteries

Introduction

Derivation of the 1-D model equations

- Model assumptions
- Transport equations
- Boundary conditions

Classification

Numerics

- Steady state solution
- Transient solution

Towards Optimization

- Weak formulation
- Performance citeria

Incorperating mechanical effects

- Cahn-Hilliard Approach
- Electrochemical interfacial kinetics

Project LISA: Lithium insertation compounts for solar devices

- · Part of the BMBF network: fundamental research on renewable energies
- Compound Project: Uni Kiel, TU Darmstadt, ZSW Ulm, Uni Ulm
- First example for considered material-configuration:

```
Li|Li_{5+x}BaLa_2Ta_2O_{11.5+0.5x}|TiO_2|
```


Discharge of a Lithium Ion Cell

Mathematical modeling and optimization of all solid state thin film lithium ion batteries

Part I: Derivation and Numerics of a model for all solid-state lithium ion batteries

Schematic 3-D Cell

- Isotropic in y, z dimensions
- Perfect planar interfaces

- Isotropic in y, z dimensions
- Perfect planar interfaces
- Reactions only at the interfaces

- Isotropic in y, z dimensions
- Perfect planar interfaces
- Reactions only at the interfaces
- No repulsive ion-ion interaction $\Rightarrow D_{Li^+} = const.$

- Isotropic in y, z dimensions
- Perfect planar interfaces
- Reactions only at the interfaces
- No repulsive ion-ion interaction $\Rightarrow D_{Li^+} = const.$
- Potentiostatic discharge

- Isotropic in y, z dimensions
- Perfect planar interfaces
- Reactions only at the interfaces
- No repulsive ion-ion interaction $\Rightarrow D_{Li^+} = const.$
- Potentiostatic discharge
- No potential variation as function of status of charge (SOC) or intercalated lithium

• Isotropic in y, z dimensions

- Perfect planar interfaces
- Reactions only at the interfaces
- No repulsive ion-ion interaction $\Rightarrow D_{Li^+} = const.$
- Potentiostatic discharge
- No potential variation as function of status of charge (SOC) or intercalated lithium
- No mechanical effects of lithium intercalation

- Ion diffusion
- Electric potential
- Variables:

 $C_{Li^+}(X,t), \Phi(X,t)$

- Ion diffusion
- Electric potential
- Variables: $C_{Li^+}(X,t), \Phi(X,t)$
- Intercalted particle diffusion
- Variable: $C_{Li}(X, t)$

- Ion diffusion
- Electric potential
- Variables: $C_{Li^+}(X,t), \Phi(X,t)$
- Chemical reaction (deintercalation)
- Stern Layer potential drop

- Chemical reaction (intercalation)
- Stern Layer potential drop

- Intercalted particle diffusion
- Variable: $C_{Li}(X, t)$

Transport equations

Continuity equation:

$$\frac{\partial C_i}{\partial t} = -\frac{\partial J_i}{\partial X}, \quad i = Li^+, Li$$

- C_i concentration of species i
- J_i flux of species i in

Transport equations

Continuity equation:

$$\frac{\partial C_i}{\partial t} = -\frac{\partial J_i}{\partial X}, \quad i = Li^+, Li$$

- C_i concentration of species i
- J_i flux of species i in

Solid electrolyte

Nernst Planck flux:	$J_{Li^+} = -D_{Li^+} \frac{\partial C_{Li^+}}{\partial X} - B_{Li^+} C_{Li^+} \frac{\partial \Phi}{\partial X}$
Poisson equation:	$-\frac{\partial}{\partial X}\left(\varepsilon_{E\ell}\frac{\partial\Phi}{\partial X}\right) = \rho_{E\ell}$

Intercalation electrode

$$J_{Li} = -D_{Li} \frac{\partial C_{Li}}{\partial X}$$

Electrostatic Field

Solid electrolyte

Nernst Planck flux:

Poisson equation:

$$J_{Li^{+}} = -D_{Li^{+}} \frac{\partial C_{Li^{+}}}{\partial X} - B_{Li^{+}} C_{Li^{+}} \frac{\partial \Phi}{\partial X}$$
$$- \frac{\partial}{\partial X} \left(\varepsilon_{E\ell} \frac{\partial \Phi}{\partial X} \right) = \rho_{E\ell}$$
$$= F(C_{Li^{+}} - C_{Anions})$$

Non-dimensional transport equations

Non-dimensional variables without subindices.

Solid electrolyteNernst Planck equation: $\frac{\partial}{\partial \tau} c = \nabla \cdot (\boldsymbol{A}_1 \nabla c + \boldsymbol{A}_1 c \nabla \Phi)$ in $\mathcal{Q}_1 := \Omega_1 \times (0, \mathcal{T})$ Poisson equation: $-\Delta \Phi = \frac{1}{2\varepsilon_{eff}^2} (c - c_{Anion})$ in $\mathcal{Q}_1 := \Omega_1 \times (0, \mathcal{T})$

Intercalation electrode

$$\text{Diffusion equation:} \quad \frac{\partial}{\partial \tau} \rho = \nabla \cdot (\boldsymbol{A}_2 \nabla \rho) \qquad \quad \text{in } \mathcal{Q}_2 := \Omega_2 \times (0, \mathcal{T})$$

Derivation of Robin Boundary conditions for Φ_{--}

$$\Phi(X_1) = \Phi_0 - \Delta \Phi_S$$

Treat the Stern Layer as (plate) capacitor

$$\hat{C}_{S} = \frac{Q}{\Delta \Phi_{S}} = \frac{1}{\Delta \Phi_{S}} A \varepsilon_{0} \varepsilon_{r} E$$
$$\Rightarrow \Delta \Phi_{S} = -\frac{1}{C_{S}} \varepsilon_{0} \varepsilon_{r} \frac{\partial \Phi}{\partial X_{1}} \Big|_{X_{1} = X_{R}}$$

Treat the Stern Layer as (plate) capacitor

$$\hat{C}_{S} = \frac{Q}{\Delta \Phi_{S}} = \frac{1}{\Delta \Phi_{S}} A \varepsilon_{0} \varepsilon_{r} E$$
$$\Rightarrow \Delta \Phi_{S} = -\frac{1}{C_{S}} \varepsilon_{0} \varepsilon_{r} \frac{\partial \Phi}{\partial X_{1}} \Big|_{X_{1} = X_{R}}$$

Robin Boundary condition for $\Phi\text{:}_{(\text{Bazant, Chu, Bayly, 2005})}$

$$\frac{\partial \Phi}{\partial n} + \frac{C_S}{\varepsilon_0 \varepsilon_r} \Phi \big|_{X_1 = X_R} = \frac{C_S}{\varepsilon_0 \varepsilon_r} \Phi_0$$

=

Basics:

Assume a fist order redox reaction $A \rightleftharpoons B$

$$\frac{\partial C_A}{\partial t} = \underbrace{-k_f C_A}_{A \to B} + \underbrace{k_b C_B}_{B \to A}$$

- C_A, C_B concentrations of A, B,
- k_f, k_b reaction rate coefficients.

Basics:

Assume a fist order redox reaction $A \rightleftharpoons B$

$$\frac{\partial C_A}{\partial t} = \underbrace{-\frac{k_f C_A}{A \to B}}_{A \to B} + \underbrace{\frac{k_b C_B}{B \to A}}_{B \to A}$$

- C_A, C_B concentrations of A, B,
- k_f, k_b reaction rate coefficients.

Transition state theory:

$$\boldsymbol{k_i} = \frac{k_B T}{h} \exp\left(\frac{-G_i^{\ddagger 0}}{RT}\right)$$

with

- $G_i^{\ddagger 0}$ Gibbs free energy of activation,
- T Temperature,
- k_B Bolzmann constant,
- h Planck constant.

Electrochemistry:

$$k_f = \frac{k_B T}{h} \exp\left(\frac{-G_f^{\ddagger 0}}{RT}\right)$$
$$k_b = \frac{k_B T}{h} \exp\left(\frac{-G_b^{\ddagger 0}}{RT}\right)$$

Electrochemistry:

$$k_f = \frac{k_B T}{h} \exp\left(\frac{-(G_f^{\ddagger 0} - \alpha \Delta \Phi)}{RT}\right)$$
$$k_b = \frac{k_B T}{h} \exp\left(\frac{-G_b^{\ddagger 0}}{RT}\right)$$

Electrochemistry:

Electrochemistry:

$$k_f = \hat{k}_f \exp\left(\frac{+\alpha\Delta\Phi}{RT}\right)$$
$$k_b = \hat{k}_b \exp\left(\frac{-(1-\alpha)\Delta\Phi}{RT}\right)$$

Electrochemistry:

Chemical reactions are accelerated due to electric potential differences between reacting phases.

Frumkin-Butler-Volmer equation

$$\frac{\partial C_A}{\partial t} = -\hat{k}_f \cdot C_A \cdot \exp\left(\alpha \Delta \Phi\right) + \hat{k}_b \cdot C_B \cdot \exp\left(-(1-\alpha)\Delta \Phi\right)$$

Electrochemistry:

Chemical reactions are accelerated due to electric potential differences between reacting phases.

Frumkin-Butler-Volmer equation

$$\frac{\partial C_A}{\partial t} = -\hat{k}_f \cdot C_A \cdot \exp\left(\alpha \Delta \Phi_{\mathbf{S}}\right) + \hat{k}_b \cdot C_B \cdot \exp\left(-(1-\alpha)\Delta \Phi_{\mathbf{S}}\right)$$

- $\Delta \Phi_S(X,t) = \Phi_0 \Phi(X,t)$ potential drop in the Stern layer
- $C_i(X, t)$ concentration of species i = A, B

Electrochemistry:

Chemical reactions are accelerated due to electric potential differences between reacting phases.

Frumkin-Butler-Volmer equation

$$\frac{\partial C_A}{\partial t} = -\hat{k}_f \cdot C_A \cdot \exp\left(\alpha \Delta \Phi_{\mathbf{S}}\right) + \hat{k}_b \cdot C_B \cdot \exp\left(-(1-\alpha)\Delta \Phi_{\mathbf{S}}\right)$$

- $\Delta \Phi_S(X,t) = \Phi_0 \Phi(X,t)$ potential drop in the Stern layer
- $C_i(X, t)$ concentration of species i = A, B
- With $\eta = \Delta \Phi \Delta \Phi^{eq}$ the reaction rate is given by the classical Butler-Volmer equation (Doyle, Fuller, Newman, 1993)

Definition: Surface concentration (in a continuum mechanical sense)

$$\tilde{C} := C(X) \Big|_{X \in \Sigma_A} d_V \qquad \left[\frac{mol}{m^2} \right]$$

Surface reaction:

$$\frac{\partial \tilde{C}_A}{\partial t} = -k_f \, \tilde{C}_A + k_b \, \tilde{C}_B$$

 $\frac{mol}{m^2}$

Definition: Surface concentration (in a continuum mechanical sense)

$$\tilde{C} := C(X)\big|_{X \in \Sigma_A} d_V$$

Surface reaction:

$$\frac{\partial \tilde{C}_A}{\partial t} = -k_f \, \tilde{C}_A + k_b \, \tilde{C}_B$$

Interpretation: Surface reaction as outward flux of C_A on $\Sigma_A := \Gamma_A \times (0, \mathcal{T})$.

$$nJ_A =$$

mol

 m^2

Definition: Surface concentration (in a continuum mechanical sense)

$$\tilde{C} := C(X)\big|_{X \in \Sigma_A} d_V$$

Surface reaction:

$$rac{\partial ilde{C}_A}{\partial t} = -k_f \, ilde{C}_A + k_b \, ilde{C}_B$$

Interpretation: Surface reaction as outward flux of C_A on $\Sigma_A := \Gamma_A \times (0, \mathcal{T})$.

$$nJ_A = -\frac{\partial \hat{C}_A}{\partial t}$$

 $\frac{mol}{m^2}$

Definition: Surface concentration (in a continuum mechanical sense)

$$\tilde{C} := C(X)\big|_{X \in \Sigma_A} d_V$$

Surface reaction:

$$\frac{\partial \tilde{C}_A}{\partial t} = -k_f \, \tilde{C}_A + k_b \, \tilde{C}_B$$

Interpretation: Surface reaction as outward flux of C_A on $\Sigma_A := \Gamma_A \times (0, \mathcal{T})$.

$$nJ_A = -\frac{\partial \tilde{C}_A}{\partial t} = k_f \tilde{C}_A - k_b \tilde{C}_B = k_f d_V C_A \big|_{\Sigma_A} - k_b d_V C_B \big|_{\Sigma_A}$$

 $\frac{mol}{m^2}$

Definition: Surface concentration (in a continuum mechanical sense)

$$\tilde{C} := C(X)\big|_{X \in \Sigma_A} d_V$$

Surface reaction:

$$rac{\partial \tilde{C}_A}{\partial t} = -k_f \, \tilde{C}_A + k_b \, \tilde{C}_B$$

Interpretation: Surface reaction as outward flux of C_A on $\Sigma_A := \Gamma_A \times (0, \mathcal{T})$.

Neumann Boundary Condition for C_A : $nJ_A = \hat{k}_f d_V \left[C_A \exp\left(\alpha(\Phi_0 - \Phi)\right) \right] \Big|_{\Sigma_A} - \hat{k}_b d_V \left[C_B \exp\left(-(1 - \alpha)(\Phi_0 - \Phi)\right) \right] \Big|_{\Sigma_A}$

← Classification

Classification - In contrast to...

... Bazant or other Poisson-Nernst-Planck (PNP) systems for semiconductors

- Model for a complete time dependent battery discharge
- PNP system coupled with intercalation electrode
- Frumkin-Butler-Volmer equation as coupling boundary condition for intercalation
← Classification

Classification - In contrast to...

... Bazant or other Poisson-Nernst-Planck (PNP) systems for semiconductors

- Model for a complete time dependent battery discharge
- PNP system coupled with intercalation electrode
- Frumkin-Butler-Volmer equation as coupling boundary condition for intercalation

... Newman

- Solid electrolyte with fixed anion structure
- Double layer potential drop:
 - ... diffuse: calculated with Poisson equation
 - ... Stern: calculated with Robin boundary conditions
- Frumkin-Butler-Volmer equation: reaction accelerated due to Stern layer potential drop
- Advantage/Disadvantage: based on non measurable paramerters

Known mathematical Results for the related models ...

... for nonstationary PNP systems:

- with homogeneous Neumann boundary conditions
 - Existence of a unique weak solution (Gajewsky, Gröger, 1986),
 - Asymptotic convergence to steady state (Biler, Hebisch, Nadzieja, 1994) with exponential rate (Arnold, Markowich, Toscani, 2000),
 - Convergent finite element based discretization (Prohl, Schmunck, 2009)

Known mathematical Results for the related models ...

... for nonstationary PNP systems:

- with homogeneous Neumann boundary conditions
 - Existence of a unique weak solution (Gajewsky, Gröger, 1986),
 - Asymptotic convergence to steady state (Biler, Hebisch, Nadzieja, 1994) with exponential rate (Arnold, Markowich, Toscani, 2000),
 - Convergent finite element based discretization (Prohl, Schmunck, 2009)
- with homogeneous Neumann boundary conditions and inhomogeneous Dirichlet boundary conditions for species, Robin boundary condition for electrostatic potential (Gröger, 1984)
 - Existence of a unique weak solution
 - Existence of a unique weak solution to the stationary problem

Known mathematical Results for the related models ...

... for nonstationary PNP systems:

- with homogeneous Neumann boundary conditions
 - Existence of a unique weak solution (Gajewsky, Gröger, 1986),
 - Asymptotic convergence to steady state (Biler, Hebisch, Nadzieja, 1994) with exponential rate (Arnold, Markowich, Toscani, 2000),
 - Convergent finite element based discretization (Prohl, Schmunck, 2009)
- with homogeneous Neumann boundary conditions and inhomogeneous Dirichlet boundary conditions for species, Robin boundary condition for electrostatic potential (Gröger, 1984)
 - Existence of a unique weak solution
 - Existence of a unique weak solution to the stationary problem

...for the macroscopic Newman system: (Wu, Xu, Zou, 2006)

- Local existence of a unique weak solution for the multidimensional case
- Global existence of a unique weak solution in the 1-D case

Numerical simulation - Overview

Steady state solution ← Numerics

Initial Condition of a charged cell

Stationary system in the electrolyte (
$$\partial_{\tau} c = 0$$
):

$$0 = \frac{\partial^2}{\partial x_1} c(\cdot, \tau) + \frac{\partial}{\partial x_1} \left(c(\cdot, \tau) \frac{\partial}{\partial x_1} \varphi(\cdot, \tau) \right),$$

$$0 = \varepsilon^2 \frac{\partial^2}{\partial x_1} \varphi(\cdot, \tau) + \frac{1}{2} (c(\cdot, \tau) - c_A).$$

Steady state solution ← Numerics

Initial Condition of a charged cell

Stationary system in the electrolyte (
$$\partial_{\tau} c = 0$$
):

$$0 = \frac{\partial^2}{\partial x_1} c(\cdot, \tau) + \frac{\partial}{\partial x_1} \left(c(\cdot, \tau) \frac{\partial}{\partial x_1} \varphi(\cdot, \tau) \right),$$

$$0 = \varepsilon^2 \frac{\partial^2}{\partial x_1} \varphi(\cdot, \tau) + \frac{1}{2} (c(\cdot, \tau) - c_A).$$

Boundary conditions on $x_1 \in \{0, 1\}$:

$$\begin{aligned} \frac{\partial}{\partial x_1} c(x_1,\tau) + c(x_1,\tau) \frac{\partial}{\partial x_1} \varphi(x_1,\tau) &= 0, \\ \frac{\partial}{\partial x_1} \varphi(x_1,\tau) + \frac{1}{\gamma \varepsilon} \varphi(x_1,\tau) &= \varphi_0, \end{aligned}$$

with

•
$$\lambda_S := \varepsilon_0 \varepsilon_r / C_S$$
,

•
$$\gamma := \lambda_S / \lambda_D$$
,

•
$$\lambda_D := \sqrt{\frac{\varepsilon_b RT}{2F^2 C_{Li^+}^{bulk}}}.$$

Initial Condition of a charged cell

Stationary system in the electrolyte (
$$\partial_{\tau} c = 0$$
):

$$0 = \frac{\partial^2}{\partial x_1} c(\cdot, \tau) + \frac{\partial}{\partial x_1} \left(c(\cdot, \tau) \frac{\partial}{\partial x_1} \varphi(\cdot, \tau) \right),$$

$$0 = \varepsilon^2 \frac{\partial^2}{\partial x_1} \varphi(\cdot, \tau) + \frac{1}{2} (c(\cdot, \tau) - c_A).$$

Boundary conditions on $x_1 \in \{0, 1\}$:

$$\begin{aligned} \frac{\partial}{\partial x_1} c(x_1,\tau) + c(x_1,\tau) \frac{\partial}{\partial x_1} \varphi(x_1,\tau) &= 0, \\ \frac{\partial}{\partial x_1} \varphi(x_1,\tau) + \frac{1}{\gamma \varepsilon} \varphi(x_1,\tau) &= \varphi_0, \end{aligned}$$

Additional weak constraint

$$\int_0^1 c(x_1) \, dx_1 = c_A.$$

with

•
$$\lambda_S := \varepsilon_0 \varepsilon_r / C_S$$
,

•
$$\gamma := \lambda_S / \lambda_D$$
,

•
$$\lambda_D := \sqrt{\frac{\varepsilon_b RT}{2F^2 C_{Li^+}^{bulk}}}.$$

Potential Drop $\Delta \Phi_s$

Stationary solution with reaction - Variation of λ_D

Steady state solution ← Numerics

Stationary solution with reaction - Variation of λ_D

Stationary solution with reaction - Variation of λ_D

Potential and Concentration Distribution across the Solid Elektrolyte

Model equations for discharge

d-dimensional equation system

$$\begin{split} &\frac{\partial}{\partial \tau} c = \nabla \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi) & \text{in } \mathcal{Q}_1, \\ &0 = \Delta \varphi + f(c) & \text{in } \mathcal{Q}_1, \\ &\frac{\partial}{\partial \tau} \rho = \nabla \cdot \boldsymbol{A}_2 \nabla \rho & \text{in } \mathcal{Q}_2, \end{split}$$

d-dimensional equation system $\frac{\partial}{\partial \tau} c = \nabla \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi) \quad \text{in } \mathcal{Q}_1,$ $0 = \Delta \varphi + f(c) \qquad \text{in } \mathcal{Q}_1,$

$$\begin{split} 0 &= \Delta \varphi + f(c) & \text{ in } \mathcal{Q}_1, \\ \frac{\partial}{\partial \tau} \rho &= \nabla \cdot \boldsymbol{A}_2 \nabla \rho & \text{ in } \mathcal{Q}_2, \end{split}$$

Boundary conditions

$$\begin{split} \cdot \, \boldsymbol{A}_1(\nabla c + c\nabla\varphi) &= R(c,\rho,\varphi) \quad \text{on } \Sigma_1, \\ \frac{\partial\varphi}{\partial n} + \alpha\varphi &= g \qquad \qquad \text{on } \Sigma_1, \\ n \cdot \, \boldsymbol{A}_2\nabla\rho &= R(c,\rho,\varphi) \quad \text{on } \Sigma_2, \end{split}$$

Initial values

n

$$\begin{split} c(x,0) &= c_0(x) \quad \text{in } \Omega_1, \\ \rho(x,0) &= \rho_0(x) \quad \text{in } \Omega_2, \end{split}$$

d-dimensional equation system		Boundary conditions	
$\frac{\partial}{\partial \tau}c = \nabla \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi)$	in $\mathcal{Q}_1,$	$n \cdot \boldsymbol{A}_1(\nabla c + c \nabla \varphi) = R(c, \rho, \varphi)$	on Σ_1 ,
$0 = \Delta \varphi + f(c)$	$\text{ in } \mathcal{Q}_1,$	$\frac{\partial \varphi}{\partial n} + \alpha \varphi = g$	on Σ_1 ,
$rac{\partial}{\partial au} ho = abla \cdot oldsymbol{A}_2 abla ho$	$\text{ in } \mathcal{Q}_2,$	$n \cdot \boldsymbol{A}_2 \nabla \rho = R(c, \rho, \varphi)$	on Σ_2 ,
		Initial values	
		$c(x,0)=c_0(x) \text{in } \Omega_1,$	
with		$\rho(x,0)=\rho_0(x)\text{in }\Omega_2,$	

• $f(c) := 1/(2\varepsilon^2)(c - c_A)$,

d-dimensional equation system		Boundary conditions	
$\frac{\partial}{\partial \tau} c = \nabla \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi)$ $0 = \Delta \varphi + f(c)$	in $\mathcal{Q}_1,$ in $\mathcal{Q}_1,$	$\begin{split} n \cdot \mathbf{A}_1 (\nabla c + c \nabla \varphi) &= R(c, \rho, \varphi) \\ \frac{\partial \varphi}{\partial n} + \alpha \varphi &= g \end{split}$	on Σ_1 , on Σ_1 ,
$\frac{\partial}{\partial \tau} \rho = \nabla \cdot \boldsymbol{A}_2 \nabla \rho$	in $\mathcal{Q}_2,$	$n \cdot \boldsymbol{A}_2 \nabla \rho = R(c, \rho, \varphi)$	on Σ_2 ,
		IIIItial values	
with		$\begin{split} c(x,0) &= c_0(x) \text{in } \Omega_1, \\ \rho(x,0) &= \rho_0(x) \text{in } \Omega_2, \end{split}$	
• $f(c) := 1/(2\varepsilon^2)(c - c_A),$			

•
$$R(c,\rho,\varphi) := \begin{cases} k_{c,1}ce^{\alpha_{c_1}(\varphi_0-\varphi)} - k_{a,1}c_Me^{-\alpha_{a_1}(\varphi_0-\varphi)}, & \text{on } \Sigma_{1_1}, \\ k_{c,2}ce^{-\alpha_{c_2}\varphi} - k_{a,2}\rho_N\rho e^{\alpha_{a_2}\varphi}, & \text{on } \Sigma_{1_2}, \end{cases}$$

d-dimensional equation system		Boundary conditions	
$\frac{\partial}{\partial \tau} c = \nabla \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi)$ $0 = \Delta \varphi + f(c)$	in $\mathcal{Q}_1,$ in $\mathcal{Q}_1,$	$\begin{split} n \cdot \mathbf{A}_1 (\nabla c + c \nabla \varphi) &= R(c, \rho, \varphi) \\ \frac{\partial \varphi}{\partial n} + \alpha \varphi &= g \end{split}$	on Σ_1 , on Σ_1 ,
$\frac{\partial}{\partial \tau} \rho = \nabla \cdot \boldsymbol{A}_2 \nabla \rho$	in $\mathcal{Q}_2,$	$n \cdot \boldsymbol{A}_2 \nabla \rho = R(c, \rho, \varphi)$	on Σ_2 ,
		IIIItial values	
with		$\begin{split} c(x,0) &= c_0(x) \text{in } \Omega_1, \\ \rho(x,0) &= \rho_0(x) \text{in } \Omega_2, \end{split}$	
• $f(c) := 1/(2\varepsilon^2)(c - c_A),$			

•
$$R(c,\rho,\varphi) := \begin{cases} k_{c,1}ce^{\alpha_{c_1}(\varphi_0-\varphi)} - k_{a,1}c_Me^{-\alpha_{a_1}(\varphi_0-\varphi)}, & \text{on } \Sigma_{1_1}, \\ k_{c,2}ce^{-\alpha_{c_2}\varphi} - k_{a,2}\rho_N\rho e^{\alpha_{a_2}\varphi}, & \text{on } \Sigma_{1_2}, \end{cases}$$

d-dimensional equation system	Boundary conditions		
$\frac{\partial}{\partial \tau} c = \nabla \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi) \text{in } \mathcal{Q}_1,$	$n \cdot \boldsymbol{A}_1(\nabla c + c \nabla \varphi) = R(c, \rho, \varphi)$ $\frac{\partial \varphi}{\partial \varphi} = c$	on Σ_1 ,	
$\begin{split} 0 &= \Delta \varphi + f(c) & \text{ in } \mathcal{Q}_1, \\ \frac{\partial}{\partial \tau} \rho &= \nabla \cdot \boldsymbol{A}_2 \nabla \rho & \text{ in } \mathcal{Q}_2, \end{split}$	$\frac{\partial n}{\partial n} + \alpha \varphi = g$ $n \cdot \mathbf{A}_2 \nabla \rho = R(c, \rho, \varphi)$	on Σ_1 , on Σ_2 ,	
	Initial values		
with	$\begin{split} c(x,0) &= c_0(x) \text{in } \Omega_1, \\ \rho(x,0) &= \rho_0(x) \text{in } \Omega_2, \end{split}$		
• $f(c) := 1/(2\varepsilon^2)(c - c_A)$,			
• $R(c,\rho,\varphi) := \begin{cases} k_{c,1}ce^{\alpha_{c_1}(\varphi_0-\varphi)} - k_{a,1}c_Me^{-\alpha_{a_1}(\varphi_0-\varphi)}, & \text{on } \Sigma_{1_1}, \\ k_{c,2}ce^{-\alpha_{c_2}\varphi} - k_{a,2}\rho_N\rho e^{\alpha_{a_2}\varphi}, & \text{on } \Sigma_{1_2}, \end{cases}$			
• $g := \begin{cases} \varphi_0, & \text{on } \Sigma_{1_1}, \\ 0, & \text{on } \Sigma_{1_2}, \end{cases}$ • $\alpha := 1/(\gamma \varepsilon).$			

d-dimensional equation system		Boundary conditions	
$rac{\partial}{\partial au} c = abla \cdot oldsymbol{A}_1 (abla c + c abla arphi) ext{in } \mathcal{Q}$	$p_{1},$	$n \cdot \boldsymbol{A}_1(\nabla c + c \nabla \varphi) = R(c, \rho, \varphi)$	on Σ_1 ,
$0 = \Delta \varphi + f(c) \qquad \text{ in } \mathcal{Q}$	$2_1,$	$rac{\partial arphi}{\partial n} + lpha arphi = g$	$\text{ on }\Sigma_1,$
$rac{\partial}{\partial au} ho = abla \cdot oldsymbol{A}_2 abla ho \qquad \qquad$	$2_2,$	$n \cdot \boldsymbol{A}_2 \nabla \rho = R(c, \rho, \varphi)$	on Σ_2 ,
		Initial values	
		$c(x,0) = c_0(x)$ in Ω_1 ,	
with		$\rho(x,0)=\rho_0(x)\text{in }\Omega_2,$	
• $f(c) := 1/(2\varepsilon^2)(c - c_A),$			
• $R(c,\rho,\varphi) := \begin{cases} k_{c,1}ce^{\alpha_{c_1}(\varphi_0-\varphi)} - k_{a,1}c_Me^{-\alpha_{a_1}(\varphi_0-\varphi)}, & \text{on } \Sigma_{1_1}, \\ k_{c,2}ce^{-\alpha_{c_2}\varphi} - k_{a,2}\rho_N\rho e^{\alpha_{a_2}\varphi}, & \text{on } \Sigma_{1_2}, \end{cases}$			
• $g := \begin{cases} \varphi_0, & \text{on } \Sigma_{1_1}, \\ 0, & \text{on } \Sigma_{1_2}, \end{cases}$		Differences to 1-D case	

• $\alpha := 1/(\gamma \varepsilon)$. Additional isolation boundary conditions on all other boundaries

d-dimensional equation system	Boundary conditions		
$\begin{split} \frac{\partial}{\partial \tau} c &= \nabla \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi) & \text{in } \mathcal{Q}_1, \\ 0 &= \Delta \varphi + f(c) & \text{in } \mathcal{Q}_1, \\ \frac{\partial}{\partial \tau} \rho &= \nabla \cdot \boldsymbol{A}_2 \nabla \rho & \text{in } \mathcal{Q}_2, \end{split}$	$\begin{split} n \cdot \boldsymbol{A}_1 (\nabla c + c \nabla \varphi) &= R(c, \rho, \varphi) \\ \frac{\partial \varphi}{\partial n} + \alpha \varphi &= g \\ n \cdot \boldsymbol{A}_2 \nabla \rho &= R(c, \rho, \varphi) \end{split}$	on Σ_1 , on Σ_1 , on Σ_2 ,	
	Initial values		
with	$\begin{split} c(x,0) &= c_0(x) \text{in } \Omega_1, \\ \rho(x,0) &= \rho_0(x) \text{in } \Omega_2, \end{split}$		
• $f(c) := 1/(2\varepsilon^2)(c - c_A),$			
• $R(c,\rho,\varphi) := \begin{cases} k_{c,1}ce^{\alpha_{c_1}(\varphi_0-\varphi)} - k_{a,1}c_Me^{-\alpha_{a_1}(\varphi_0-\varphi)}, & \text{on } \Sigma_{1_1}, \\ k_{c,2}ce^{-\alpha_{c_2}\varphi} - k_{a,2}\rho_N\rho e^{\alpha_{a_2}\varphi}, & \text{on } \Sigma_{1_2}, \end{cases}$ • $a := \int \varphi_0, \text{on } \Sigma_{1_1}, \qquad \text{Nonlinearities}$			
• $g := \begin{cases} 0, & \text{on } \Sigma_{1_2}, \\ \bullet & \alpha := 1/(\gamma \varepsilon). \end{cases}$	NUTIME anties		

Time dependent discharge - $D_1 = 10^{-12}$

Time dependent discharge - $D_1 = 10^{-15}$

With suitable test functions $\tilde{c}, \tilde{\varphi}, \tilde{\rho}$ denote

$$\langle A_1(w,\varphi), \tilde{c} \rangle := \int_{\Omega_1} \boldsymbol{A}_1(\nabla w + w \nabla \varphi) \cdot \nabla \tilde{c} \, dx$$

$$\langle G_1(w,\varphi,u), \tilde{c} \rangle := \int_{\Gamma_1} R(w,\varphi,u) \tilde{c} \, dx$$

System of equations

 $c'(\tau) + A_1(c(\tau), \varphi(\tau)) = G_1(c(\tau), \varphi(\tau), \rho(\tau)),$

With suitable test functions $\tilde{c}, \tilde{\varphi}, \tilde{\rho}$ denote

$$\begin{split} \langle A_1(w,\varphi), \tilde{c} \rangle &:= \int_{\Omega_1} \boldsymbol{A}_1(\nabla w + w \nabla \varphi) \cdot \nabla \tilde{c} \, dx \\ \langle G_1(w,\varphi,u), \tilde{c} \rangle &:= \int_{\Gamma_1} R(w,\varphi,u) \tilde{c} \, dx \\ \langle B\varphi, \tilde{\varphi} \rangle &:= \int_{\Omega_1} \nabla \varphi \cdot \nabla \tilde{\varphi} \, dx + \int_{\Gamma_1} (\alpha \varphi - g) \tilde{\varphi} \, dx \end{split}$$

System of equations

$$c'(\tau) + A_1(c(\tau), \varphi(\tau)) = G_1(c(\tau), \varphi(\tau), \rho(\tau)),$$

$$B\varphi(\tau) = f(c(\tau)),$$

With suitable test functions $\tilde{c}, \tilde{\varphi}, \tilde{\rho}$ denote

$$\begin{split} \langle A_1(w,\varphi), \tilde{c} \rangle &:= \int_{\Omega_1} \boldsymbol{A}_1(\nabla w + w \nabla \varphi) \cdot \nabla \tilde{c} \, dx \\ \langle G_1(w,\varphi,u), \tilde{c} \rangle &:= \int_{\Gamma_1} R(w,\varphi,u) \tilde{c} \, dx \\ \langle B\varphi, \tilde{\varphi} \rangle &:= \int_{\Omega_1} \nabla \varphi \cdot \nabla \tilde{\varphi} \, dx + \int_{\Gamma_1} (\alpha \varphi - g) \tilde{\varphi} \, dx \\ \langle A_2(u,\varphi), \tilde{\rho} \rangle &:= \int_{\Omega_2} \boldsymbol{A}_2 \nabla u \cdot \nabla \tilde{\rho} \, dx \\ \langle G_2(w,\varphi,u), \tilde{\rho} \rangle &:= \int_{\Gamma_2} R(w,\varphi,u) \tilde{\rho} \, dx \end{split}$$

System of equations

$$\begin{aligned} c'(\tau) + A_1(c(\tau),\varphi(\tau)) &= G_1(c(\tau),\varphi(\tau),\rho(\tau)),\\ B\varphi(\tau) &= f(c(\tau)),\\ \rho'(\tau) + A_2(\rho(\tau)) &= G_2(c(\tau),\varphi(\tau),\rho(\tau)), \end{aligned}$$

With suitable test functions $\tilde{c}, \tilde{\varphi}, \tilde{\rho}$ denote

$$\begin{split} \langle A_1(w,\varphi), \tilde{c} \rangle &:= \int_{\Omega_1} \boldsymbol{A}_1(\nabla w + w \nabla \varphi) \cdot \nabla \tilde{c} \, dx \\ \langle G_1(w,\varphi,u), \tilde{c} \rangle &:= \int_{\Gamma_1} R(w,\varphi,u) \tilde{c} \, dx \\ \langle B\varphi, \tilde{\varphi} \rangle &:= \int_{\Omega_1} \nabla \varphi \cdot \nabla \tilde{\varphi} \, dx + \int_{\Gamma_1} (\alpha \varphi - g) \tilde{\varphi} \, dx \\ \langle A_2(u,\varphi), \tilde{\rho} \rangle &:= \int_{\Omega_2} \boldsymbol{A}_2 \nabla u \cdot \nabla \tilde{\rho} \, dx \\ \langle G_2(w,\varphi,u), \tilde{\rho} \rangle &:= \int_{\Gamma_2} R(w,\varphi,u) \tilde{\rho} \, dx \end{split}$$

System of equations

$$\begin{aligned} c'(\tau) + A_1(c(\tau), \varphi(\tau)) &= G_1(c(\tau), \varphi(\tau), \rho(\tau)), \\ B\varphi(\tau) &= f(c(\tau)), \\ \rho'(\tau) + A_2(\rho(\tau)) &= G_2(c(\tau), \varphi(\tau), \rho(\tau)), \\ c(x, 0) &= c_0(x) \quad \rho(x, 0) = \rho_0(x). \end{aligned}$$

Specific energy

$$E = \frac{1}{M_A} \int_0^T i V \, dt$$

Average specific power

$$P = \frac{1}{M_A \mathcal{T}} \int_0^{\mathcal{T}} i V \, dt$$

- ${\mathcal T}$ discharge time,
- M_A mass per unit area,
- V cell potential,

Mathematical Modeling All Solid State Batteries

- *T* discharge time,
- M_A mass per unit area,
- V cell potential,

Total (discharge) current density: i = i(t; V) (for galvanostatic discharge to a given applied voltage):

Total (discharge) current density: i = i(t; V) (for galvanostatic discharge to a given applied voltage): sum of conduction and displacement current densities

$$i(t) = i_c(X, t) - \varepsilon_b \partial_t \partial_X \Phi(X, t)$$

•
$$i_c = -F \left[D_{Li^+} \partial_X c(X, t) + B_{Li^+} \partial_X \Phi(X, t) \right],$$

- A electrode area.
- F Faraday constant.

Total (discharge) current density: i = i(t; V) (for galvanostatic discharge to a given applied voltage): sum of conduction and displacement current densities

$$i(t) = i_c(X, t) - \varepsilon_b \partial_t \partial_X \Phi(X, t)$$

•
$$i_c = -F \left[D_{Li^+} \partial_X c(X, t) + B_{Li^+} \partial_X \Phi(X, t) \right],$$

- A electrode area,
- F Faraday constant.

$$\begin{array}{ll} \max \quad E(c,\varphi,\rho;\mu), \quad \max \quad P(c,\varphi,\rho;\mu) \quad \text{subject to} \\ \\ c'(\tau) + A_1(c(\tau),\varphi(\tau)) = G_1(c(\tau),\varphi(\tau),\rho(\tau)), & \text{ on } \mathcal{Q}_1, \\ & B\varphi(\tau) = f(c(\tau)), & \text{ on } \mathcal{Q}_1, \\ \rho'(\tau) + A_2(\rho(\tau)) = G_2(c(\tau),\varphi(\tau),\rho(\tau)), & \text{ on } \mathcal{Q}_2, \\ & c(x,0) = c_0(x), & \text{ on } \Omega_1, \\ & \rho(x,0) = \rho_0(x), & \text{ on } \Omega_2. \end{array}$$

$$\begin{array}{ll} \max \quad E(c,\varphi,\rho;\mu), & \max \quad P(c,\varphi,\rho;\mu) \quad \text{subject to} \\ \\ c'(\tau) + A_1(c(\tau),\varphi(\tau);\mu) = G_1(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_1, \\ & B\varphi(\tau) = f(c(\tau)), & \text{on } \mathcal{Q}_1, \\ & \rho'(\tau) + A_2(\rho(\tau);\mu) = G_2(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_2, \\ & c(x,0) = c_0(x), & \text{on } \Omega_1, \\ & \rho(x,0) = \rho_0(x), & \text{on } \Omega_2. \end{array}$$

- Material parameters
 - Diffusion coefficients D_{Li^+}, D_{Li}

$$\begin{array}{ll} \max \quad E(c,\varphi,\rho;\mu), \quad \max \quad P(c,\varphi,\rho;\mu) \quad \text{subject to} \\ \\ c'(\tau) + A_1(c(\tau),\varphi(\tau)) = G_1(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_1, \\ & B\varphi(\tau) = f(c(\tau);\mu), & \text{on } \mathcal{Q}_1, \\ \rho'(\tau) + A_2(\rho(\tau)) = G_2(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_2, \\ & c(x,0) = c_0(x), & \text{on } \Omega_1, \\ & \rho(x,0) = \rho_0(x), & \text{on } \Omega_2. \end{array}$$

- Material parameters
 - Diffusion coefficients D_{Li^+}, D_{Li}
 - Permittivity of the electrolyte ε

$$\begin{array}{lll} \max & E(c,\varphi,\rho;\mu), & \max & P(c,\varphi,\rho;\mu) & \text{subject to} \\ & c'(\tau) + A_1(c(\tau),\varphi(\tau)) = G_1(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_1, \\ & & B\varphi(\tau) = f(c(\tau)), & \text{on } \mathcal{Q}_1, \\ & & \rho'(\tau) + A_2(\rho(\tau)) = G_2(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_2, \\ & & c(x,0) = c_0(x), & \text{on } \Omega_1, \\ & & \rho(x,0) = \rho_0(x), & \text{on } \Omega_2. \end{array}$$

- Material parameters
 - Diffusion coefficients D_{Li^+}, D_{Li}
 - Permittivity of the electrolyte ε
 - Stiffness of the intercalation electrode

$$\begin{array}{ll} \max \quad E(c,\varphi,\rho;\mu), & \max \quad P(c,\varphi,\rho;\mu) \quad \text{subject to} \\ \\ c'(\tau) + A_1(c(\tau),\varphi(\tau);\mu) &= G_1(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_1, \\ & B\varphi(\tau) &= f(c(\tau)), & \text{on } \mathcal{Q}_1, \\ & \rho'(\tau) + A_2(\rho(\tau);\mu) &= G_2(c(\tau),\varphi(\tau),\rho(\tau)), & \text{on } \mathcal{Q}_2, \\ & c(x,0) &= c_0(x), & \text{on } \Omega_1, \\ & \rho(x,0) &= \rho_0(x), & \text{on } \Omega_2. \end{array}$$

- Material parameters
 - Diffusion coefficients D_{Li^+}, D_{Li}
 - Permittivity of the electrolyte ε
 - Stiffness of the intercalation electrode
- Geometric parameters
 - Component sizes: for 1-D length of electrolyte and electrode L_1, L_2

Denote
$$c(\tau):=c(\tau;\mu), \varphi(\tau):=\varphi(\tau;\mu), \rho(\tau):=\rho(\tau;\mu)$$

$$\begin{array}{ll} \max \quad E(c,\varphi,\rho;\mu), \quad \max \quad P(c,\varphi,\rho;\mu) \quad \text{subject to} \\ \\ c'(\tau) + A_1(c(\tau),\varphi(\tau)) = G_1(c(\tau),\varphi(\tau),\rho(\tau);\mu), \quad \text{on } \mathcal{Q}_1, \\ & B\varphi(\tau) = f(c(\tau)), \qquad \text{on } \mathcal{Q}_1, \\ & \rho'(\tau) + A_2(\rho(\tau)) = G_2(c(\tau),\varphi(\tau),\rho(\tau);\mu), \quad \text{on } \mathcal{Q}_2, \\ & c(x,0) = c_0(x), \qquad \text{on } \Omega_1, \\ & \rho(x,0) = \rho_0(x), \qquad \text{on } \Omega_2. \end{array}$$

- Material parameters
 - Diffusion coefficients D_{Li^+}, D_{Li}
 - Permittivity of the electrolyte ε
 - Stiffness of the intercalation electrode
- Geometric parameters
 - Component sizes: for 1-D length of electrolyte and electrode L_1, L_2
 - Contact surface

$$\begin{array}{ll} \max \quad E(c,\varphi,\rho;\mu), \quad \max \quad P(c,\varphi,\rho;\mu) \quad \text{subject to} \\ \\ c'(\tau) + A_1(c(\tau),\varphi(\tau)) = G_1(c(\tau),\varphi(\tau),\rho(\tau)), & \text{ on } \mathcal{Q}_1, \\ & B\varphi(\tau) = f(c(\tau)), & \text{ on } \mathcal{Q}_1, \\ \rho'(\tau) + A_2(\rho(\tau)) = G_2(c(\tau),\varphi(\tau),\rho(\tau)), & \text{ on } \mathcal{Q}_2, \\ & c(x,0) = c_0(x), & \text{ on } \Omega_1, \\ & \rho(x,0) = \rho_0(x), & \text{ on } \Omega_2. \end{array}$$

- Material parameters
 - Diffusion coefficients D_{Li^+}, D_{Li}
 - Permittivity of the electrolyte ε
 - Stiffness of the intercalation electrode
- Geometric parameters
 - Component sizes: for 1-D length of electrolyte and electrode L_1, L_2
 - Contact surface
 - Composition of the electrode (not incorperated jet)
Part II: Incorperating mechanical effects

$$\text{Total free energy} \quad G[C_{Li}, \boldsymbol{e}] = \int_{\Omega} \left[\underbrace{f^0(C_{Li}) + \frac{1}{2} \nabla C_{Li} \cdot \boldsymbol{K} \nabla C_{Li} + \mathcal{W}(C_{Li}, \boldsymbol{e})}_{=:F(C_{Li}(X), \nabla C_{Li}(X)), \text{ def. } \boldsymbol{g} := \nabla C_{Li}} \right] dx$$

Total free energy
$$G[C_{Li}, \boldsymbol{e}] = \int_{\Omega} \left[\underbrace{f^0(C_{Li}) + \frac{1}{2} \nabla C_{Li} \cdot \boldsymbol{K} \nabla C_{Li} + \mathcal{W}(C_{Li}, \boldsymbol{e})}_{=:F(C_{Li}(X), \nabla C_{Li}(X)), \text{ def. } g := \nabla C_{Li}} \right] dx$$

Total free energy
$$G[C_{Li}, \boldsymbol{e}] = \int_{\Omega} \left[\underbrace{f^0(C_{Li}) + \frac{1}{2} \nabla C_{Li} \cdot \boldsymbol{K} \nabla C_{Li} + \mathcal{W}(C_{Li}, \boldsymbol{e})}_{=:F(C_{Li}(X), \nabla C_{Li}(X)), \text{ def. } g:=\nabla C_{Li}} \right] dx$$

- Free energy (per molecule) of a homogeneous system
- Composition dependent energy

Total free energy
$$G[C_{Li}, \boldsymbol{e}] = \int_{\Omega} \left[\underbrace{f^0(C_{Li}) + \frac{1}{2} \nabla C_{Li} \cdot \boldsymbol{K} \nabla C_{Li} + \mathcal{W}(C_{Li}, \boldsymbol{e})}_{=:F(C_{Li}(X), \nabla C_{Li}(X)), \text{ def. } g := \nabla C_{Li}} \right] dx$$

- Composition dependent energy
- Strain energy density (in a material point)

Total free energy
$$G[C_{Li}, \boldsymbol{e}] = \int_{\Omega} \left[\underbrace{f^0(C_{Li}) + \frac{1}{2} \nabla C_{Li} \cdot \boldsymbol{K} \nabla C_{Li} + \mathcal{W}(C_{Li}, \boldsymbol{e})}_{=:F(C_{Li}(X), \nabla C_{Li}(X)), \text{ def. } g:=\nabla C_{Li}} \right] dx$$

- Composition dependent energy
- Strain energy density (in a material point)

Chemical potential
$$\mu_{Li} := \frac{\delta G[C_{Li}]}{\delta C_{Li}(X)}$$

Instead of Fick's Diffusion ...

 $\partial_t C_{Li} = \nabla \cdot (\boldsymbol{D}_{Li} \nabla C_{Li})$

Instead of Fick's Diffusion ...

 $\partial_t C_{Li} = \nabla \cdot (\boldsymbol{D}_{Li} \nabla C_{Li})$

..diffusion in the chemical potential gradient

$$egin{aligned} \partial_t C_{Li} &=
abla \cdot \left(oldsymbol{B_{Li}}
abla oldsymbol{\mu_{Li}}
ight) \ &=
abla \cdot \left(oldsymbol{B_{Li}}
abla rac{\delta G[C_{Li}]}{\delta C_{Li}(X)}
ight) \end{aligned}$$

Instead of Fick's Diffusion ...

 $\partial_t C_{Li} = \nabla \cdot (\boldsymbol{D}_{Li} \nabla C_{Li})$

..diffusion in the chemical potential gradient

$$egin{aligned} \partial_t C_{Li} &=
abla \cdot \left(oldsymbol{B}_{Li}
abla \mu_{Li}
ight) \ &=
abla \cdot \left(oldsymbol{B}_{Li}
abla rac{\delta G[C_{Li}]}{\delta C_{Li}(X)}
ight) \end{aligned}$$

$$\frac{\delta G[C_{Li}]}{\delta C_{Li}(X)} = \frac{\partial F}{\partial C_{Li}} - \frac{d}{dX} \frac{\partial F}{\partial g} = \frac{\partial f(C_{Li}(X))}{\partial C_{Li}} - \nabla \cdot \mathbf{K} \nabla C_{Li}(X) + \frac{\partial \mathcal{W}(C_{Li}(X), \mathbf{e}(X))}{\partial C_{Li}}$$

Instead of Fick's Diffusion ...

 $\partial_t C_{Li} = \nabla \cdot (\boldsymbol{D}_{Li} \nabla C_{Li})$

..diffusion in the chemical potential gradient

$$egin{aligned} \partial_t \, C_{Li} &=
abla \cdot (oldsymbol{B_{Li}}
abla \mu_{Li}) \ &=
abla \cdot igg(oldsymbol{B_{Li}}
abla rac{\delta \, G[C_{Li}]}{\delta \, C_{Li}(X)} igg) \end{aligned}$$

Problem: fourth oder PDE

Strain energy density

W.I.o.g. ...

• Linearised mechanical strain (relative to the referenz configuration)

$$\boldsymbol{e}(\boldsymbol{u}(\boldsymbol{X})) = \frac{1}{2} \left(\nabla \boldsymbol{u}(\boldsymbol{X}) + \nabla \boldsymbol{u}(\boldsymbol{X})^T \right)$$

Strain energy density

W.I.o.g. ...

• Linearised mechanical strain (relative to the referenz configuration)

$$\boldsymbol{e}(\boldsymbol{u}(\boldsymbol{X})) = \frac{1}{2} \left(\nabla \boldsymbol{u}(\boldsymbol{X}) + \nabla \boldsymbol{u}(\boldsymbol{X})^T \right)$$

• Stress-free strain (dependent of local cristal structure and local composition)

$$\boldsymbol{e}^0(C_{Li}) = \boldsymbol{M} C_{Li}$$

Strain energy density

W.I.o.g. ...

• Linearised mechanical strain (relative to the referenz configuration)

$$\boldsymbol{e}(\boldsymbol{u}(\boldsymbol{X})) = \frac{1}{2} \left(\nabla \boldsymbol{u}(\boldsymbol{X}) + \nabla \boldsymbol{u}(\boldsymbol{X})^T \right)$$

• Stress-free strain (dependent of local cristal structure and local composition)

$$\boldsymbol{e}^0(C_{Li}) = \boldsymbol{M} C_{Li}$$

... with Hooks law of linear elasticity follows

$$\mathcal{W}(C_{Li}, \boldsymbol{e}) = \frac{1}{2} (\underbrace{\boldsymbol{e} - \boldsymbol{e}^{0}(C_{Li})}_{=:\Delta \boldsymbol{e}(C_{Li})}) : \underbrace{\boldsymbol{E}(C_{Li}) \left(\boldsymbol{e} - \boldsymbol{e}^{0}(C_{Li})\right)}_{\boldsymbol{\sigma}(\Delta \boldsymbol{e}(C_{Li}))}$$

Equation System in the intercalation electrode

Generalized diffusion equation

$$\partial_t C_{Li} = \nabla \cdot \boldsymbol{B}_{Li} \nabla \mu_{Li}$$
$$\mu = \frac{\delta G[C_{Li}, u]}{\delta C_{Li}} = \frac{\partial f(C_{Li})}{\partial C_{Li}} - \nabla \cdot \boldsymbol{K} \nabla C_{Li} + \frac{\partial \mathcal{W}(C_{Li}, \nabla u)}{\partial C_{Li}}$$

Equation System in the intercalation electrode

Generalized diffusion equation

$$\partial_t C_{Li} = \nabla \cdot \boldsymbol{B}_{Li} \nabla \mu_{Li}$$
$$\mu = \frac{\delta G[C_{Li}, u]}{\delta C_{Li}} = \frac{\partial f(C_{Li})}{\partial C_{Li}} - \nabla \cdot \boldsymbol{K} \nabla C_{Li} + \frac{\partial \mathcal{W}(C_{Li}, \nabla u)}{\partial C_{Li}}$$

Quasi-static mechanic equilibrium (define $F := \nabla u$)

$$-\nabla \cdot \boldsymbol{\sigma} = 0$$
$$\boldsymbol{\sigma} = \frac{\delta G[C_{Li}, u]}{\delta u} = -\frac{\partial \mathcal{W}(C_{Li}, \nabla u)}{\partial \boldsymbol{F}}$$
$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^{T}$$

Hidden assumption: Mechanical equilibrium is attaint on a much faster time scale than diffusion takes place.

Equation System in the intercalation electrode

Ficks diffusion

$$\partial_t C_{Li} = \nabla \cdot \boldsymbol{D}_{Li} \nabla C_{Li}$$

Quasi-static mechanic equilibrium (define $F := \nabla u$)

$$-\nabla \cdot \boldsymbol{\sigma} = 0$$
$$\boldsymbol{\sigma} = \frac{\delta G[C_{Li}, u]}{\delta u} = -\frac{\partial \mathcal{W}(C_{Li}, \nabla u)}{\partial \boldsymbol{F}}$$
$$\boldsymbol{\sigma} = \boldsymbol{\sigma}^{T}$$

Electrochemical interfacial kinetics

Frumkin-Butler-Volmer equation (electrochemical driving force)

• So far, reaction rate depending on potential drop in the stern layer

$$R^{elec} = k_{f,i} \left[C_A e^{\alpha(\Delta \Phi_S)} \right] - k_{b,i} \left[C_B e^{-(1-\alpha)\Delta \Phi_S} \right]$$

Electrochemical interfacial kinetics

Frumkin-Butler-Volmer equation (electrochemical driving force)

• So far, reaction rate depending on potential drop in the stern layer

$$R^{elec} = k_{f,i} \left[C_A e^{\alpha(\Delta \Phi_S)} \right] - k_{b,i} \left[C_B e^{-(1-\alpha)\Delta \Phi_S} \right]$$

Electrochemical interfacial kinetics

Frumkin-Butler-Volmer equation (electrochemical driving force)

• So far, reaction rate depending on potential drop in the stern layer

$$R^{elec} = k_{f,i} \left[C_A e^{\alpha(\Delta \Phi_S)} \right] - k_{b,i} \left[C_B e^{-(1-\alpha)\Delta \Phi_S} \right]$$

- ... incorperate thermodynamic driving force
 - Reaction rate also depending on the composition

$$R^{chem} = k_{f,i} \left[C_A e^{\beta(\mu_A - \mu_B)} e^{\alpha(\Delta \Phi_S)} \right] - k_{b,i} \left[C_B e^{-\beta(\mu_A - \mu_B)} e^{-(1-\alpha)\Delta \Phi_S} \right]$$

 \ldots for the diffusion equation

$$\begin{split} n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= -R^{chem} (C_{Li^+}, C_{Li}, \Phi, \Delta \mu) & \text{on } \Gamma_R \\ n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= 0 & \text{on } \Gamma_I \end{split}$$

 \ldots for the diffusion equation

$$\begin{split} n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= -R^{chem}(C_{Li^+}, C_{Li}, \Phi, \Delta \mu) & \text{on } \Gamma_R \\ n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= 0 & \text{on } \Gamma_I \end{split}$$

 \ldots for the mechanical equation

 $\boldsymbol{\sigma} n = 0$ (surface forces in equilibrium) on Γ_F

 \ldots for the diffusion equation

$$\begin{split} n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= -R^{chem}(C_{Li^+}, C_{Li}, \Phi, \Delta \mu) & \text{on } \Gamma_R \\ n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= 0 & \text{on } \Gamma_I \end{split}$$

... for the mechanical equation

 $\sigma n = 0$ (surface forces in equilibrium) on Γ_F ... or treat electrolyte as rigid body

$$u = 0$$
 (fixed body) on Γ_D

$$n \cdot u \leq 0$$
 (contact condition) on Γ_C

 \ldots for the diffusion equation

$$\begin{split} n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= -R^{chem}(C_{Li^+}, C_{Li}, \Phi, \Delta \mu) & \quad \text{on } \Gamma_R \\ n \cdot \nabla (\boldsymbol{D}_{Li^+} \nabla C_{Li^+}) &= 0 & \quad \text{on } \Gamma_I \end{split}$$

... for the mechanical equation

 $\sigma n=0$ (surface forces in equilibrium) on Γ_F ... or treat electrolyte as rigid body u=0 (fixed body) on Γ_D

$$n \cdot u \leq 0$$
 (contact condition) on Γ_C

Question: Is there an attainable quasi-static mechanical equilibrium under these boundary conditions?

 \implies Change to dynamic elasticity, moving boundaries

Questions and Discussion