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Overview

� Modeling approaches

� Equivalent circuit model

� Electrochemical model

� Mathematical Model of the electrochemical system

� Numerical realization

� Method

� Discretization in space

� Discretization in time

� Simulation Results

� Problems
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Equivalent Circuit Model I

� Pros and Cons

+ small set of parameters

+ straight-forward implementation

+ effects can be allocated to a frequency band

− limited to one operating point

− many measurements required for coupling of these points

− only the current input/voltage output characteristic can be
monitored/displayed
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Equivalent Circuit Model II

Abbildung 1: Simple RC–model with additional impedance ZW for low
frequencies.

Abbildung 2: Nyquist plot of a Li–Ion battery showing a characteristic half
circle and a 45◦ straight line.
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Electrochemical Reactions I

Abbildung 3: Electrochemical reaction during discharge of the cell.
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Electrochemical Reactions II

� Reaction in the Negative during discharge:

LixC6 → C6 + xLi+ + xe−

� Reaction in the Positive during discharge:

Li1−xFePO4 + xe− + xLi+ → LiFePO4
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Mathematical Formulation I

� Charge balance in the solid phase:

−∇(σ∇Φs) = −j (1)

� Charge balance in the fluid phase:

−∇(κ(ce)∇Φe) +∇
(

2κ(ce)RT

F
∇ ln ce

)
= j (2)

� Butler–Volmer equation (charge transfer):

i0 = ak
√

ce(cs,max − cs,surf)cs,surf (3)

j = i0
(

e
αF
RT

(Φs−Φe−UOCV ) − e−
(1−α)F

RT
(Φs−Φe−UOCV )

)
(4)
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Mathematical Formulation II

� Concentration in the solid phase:

∂cs

∂t
= Ds

1

r 2

∂

∂r

[
r 2∂cs

∂r

]
(5)

� Concentration in the fluid phase:

∂(εce)

∂t
= ∇(D∇ce) +

1− t+

F
j (6)

Taking the porosity of the electrodes into account often the
Bruggemann–relations:

σeff = σεbrug
s , κeff = κεbrug and Deff = Dεbrug are used.
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Boundary Conditions

� Charge balance in the solid phase:

−σ∇Φs = i für x = 0, x = L

� Charge balance in the fluid phase:

−(κ(ce)∇Φe) +
(

2κ(ce)RT
F ∇ ln ce

)
= 0 für x = 0, x = L

� Concentration in the solid phase:

−Ds
∂cs
∂r |r=0 = 0, −Ds

∂cs
∂r

∣∣∣r=Rs = j
aF

� Concentration in the fluid phase:

∇ce = 0 für x = 0, x = L

Additionally a reference potential has to be defined! (e.g. Φs(0) = 0)
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Initial Conditions

� Concentration in the solid phase:

cs(r , 0) = cs,0

� Concentration in the fluid phase:

ce(x , 0) = ce,0
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Modifications of the Equation System I

� Modification of the fluid potential after [1]:

Φe = Φe − 2κ(ce)RT
F ln ce

therby the charge balance in the fluid results as follows

−∇(κ(ce)∇Φe) = j (7)

as well as

j = i0
(

e
αF
RT

(Φs−(Φe+ 2κ(ce )RT
F

ln ce)−UOCV)

−e−
(1−α)F

RT
(Φs−(Φe+ 2κ(ce )RT

F
ln ce)−UOCV )

) (8)

for the Butler–Volmer equation.
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Modifications of the Equation System II

� Modification of the concentration in the solid phase by a
variable substitution after [2]:

v = rcs (9)

Thus the equation for the concentration in the solid phase
can now be written in the new coordinates as follows

∂v

∂t
=

∂

∂r

(
Ds
∂v

∂r

)
(10)

Not to forget the transformation of the boundary condition,
because the equation is no longer associated to a sphere!

Due to these modification the equations can no be written as a system of linear differential equations

coupled by an algebraic one.
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The Control Volume Method I

� CVM on the example of the charge transfer in the solid phase [3]:

−∇(σ∇Φs) = −j (11)

The integration of the equation for the 1D case yields

−
(
σ

dΦs

dx

)
e

−
(
−σdΦs

dx

)
w

= −
e∫

w

j dx . (12)

This equation can be discretized as follows

−
(
σe(Φs,E − Φs,P)

(δx)e

)
+

(
σw (Φs,P − Φs,W )

(δx)w

)
= −j̄ ∆x . (13)
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The Control Volume Method II

This brings us to a linear equation for each discretization point

aPΦs,P = aE Φs,E + aW Φs,W + b (14)

with the coefficients

aE = σe
(δx)w

, aW = σw
(δx)w

, aP = aE + aW and b = j̄ ∆x .

The resulting set of equations is symmetric showing a tridiagonal
structure. Systems of that kind can be solved by simple algorithms.
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The Control Volume Method III

Abbildung 4: Discretization of the charge balance in the solid phase after [3].

Basically this method solves bilance equations, therefore the
conservation equations are always fulfilled.

You have to consider that the boundary elements represent only half
control volumina!
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The Control Volume Method IV

Abbildung 5: Possibilities for the discretization of the profiles; left: step
profile, right: piecewise linear profil after [3].

For all calculations the step profile was used. This holds for the source
term linearization as well.
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The Control Volume Method V

� Time discretization on the example of the modified concentration
equation in the solid phase (fully implicit scheme):

∂v

∂t
=

∂

∂r

(
Ds
∂v

∂r

)
(15)

(v 1
P − v 0

P)

∆t
∆r =

(
Ds,e(v 1

E − v 1
P)

(δr)e

)
−
(

Ds,w (v 1
P − v 1

W )

(δr)w

)
(16)

with the new coefficients for the equation system

aE =
Ds,e

(δr)w
, aW =

Ds,w

(δr)e
, a0

P = ∆r
∆t , aP = aE + aW + a0

P

and b = a0
Pv 0

P .

This discretization has the advantage that its always stable!
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The Finite Difference Method

� Discretization on the example of the concentration in the solid
phase after [4]:

∂cs

∂t
= Ds

1

r 2

∂

∂r

[
r 2∂cs

∂r

]
(17)

∂cs,P

∂t
=

Ds,e

∆r(δr)e

r 2
e

r 2
p

(cs,E − cs,P)− Ds,w

∆r(δr)w

r 2
w

r 2
p

(cs,P − cs,W ) (18)

This discretization leads to an asymmtric system matrix!
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Implementation in Matlab R© I

� Description of the whole system as a pseudo–2D model:

Abbildung 6: Discretization of the equations in pseudo–2D coordinates.

Discretization in x : Nn = 5, Nsep = 3, Np = 7, scale = 1.3

Discretization in r : Np n = 50,Np p = 5, scale = 1
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Implementation in Matlab R© II

� Time discretization with variable time steps:

For the reduction of computing time the following algorithm after
[5] with an error measurement δ and a reference δg was used.

if δ < 1
2δg

accept solution + ∆t = ∆t · 1,5

elseif 1
2δg ≤ δ < δg

accept solution + ∆t = ∆t

elseif δg ≤ δ ≤ 2δg

accept solution + ∆t = ∆t · 0,5

elseif δ > 2δg
decline solution + ∆t = ∆t · 0,5

end
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Implementation in Matlab R© III

The error measurement is determined as follows

δ =
‖vf − vc‖2

‖vf ‖2

, (19)

with vf being calculated using ∆t
2 and vc using ∆t for the step size.

For the diffusion equations in the solid phased

δg = 1e−2 was used.

For the concentration in the liquid phase

δg = 1e−3 was used.

The step size can vary in the interval
1 ms < ∆t < 60 s .
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Implementation in Matlab R© IV

Abbildung 7: Error due to nonlinearity in t after [6].

Strong nonlinearities can lead to errors using a coarse step size!
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Implementation in Matlab R© V

� Calculation of the potentials using an extended Newton–method
regarding to [7]:

Abbildung 8: Current distribution between the solid and the liquid phase for
the calculation of both potentials in the negative electrode.
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Implementation in Matlab R© VI

For the negtive electrode the potential φe(0) is varied until the cur-
rent is transferred from to solid to the liquid phase or vice versa.

i =

∫
jdx =

∑
k

j̄k∆xk (20)

For the positive electrode the reaction runs into the opposite direc-
tion. The only difference is now that φe(Ln + Lsep) is known and
φs(Ln + Lsep) has to be determined.

stopping criteria:

(i −
∑
k

jk∆xk) ≤ 1e−6, maxiter= 500, smin = 1 pV, smax p = 50 mV,

smax n = 100 mV .
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Simulation Results I
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Simulation Results II
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Problems

� Dealing with source term in potential equations (iterative
methods)

� Discretization dependencies (not known)

� Low i0 causes problems

� Number of parameters

� Errors

� Physics

� Mathematical Formulation

� Realization
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Thank You For Your Attention!
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