Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Stefan Trenz, Carmen Gräßle, Marco Menner, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 2

Deadline for hand-in: 2013/05/13 at lecture

Exercise 4

(4 Points)
Consider the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma
$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric, $c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$.
Show directly, i.e. without using any theorem from the scriptum, that the following holds:

$$
f \text { is convex } \Leftrightarrow Q \text { is positive semidefinite. }
$$

Exercise 5

Consider the quadratic function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$,

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma
$$

where $Q \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$. Let $x^{k} \in \mathbb{R}^{n}$ be arbitrary and $d^{k} \in \mathbb{R}^{n}$ a descent direction of f in x^{k} for a $k \in \mathbb{N}$.
Find the (exact) step size s^{*} in direction d^{k} such that the decreasing of $f\left(x^{k}+s^{*} d^{k}\right)$ is maximal.

Exercise 6

Consider the general descent method (as known from the lecture) for the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=x^{2}
$$

with starting point $x^{0}:=1$ and the following directions $d^{k} \in \mathbb{R}$ and step-sizes $t^{k} \in \mathbb{R}$:

1. $d^{k}:=-1, t^{k}:=\left(\frac{1}{2}\right)^{k+2}$ with $k \in \mathbb{N}_{0}$,
2. $d^{k}:=(-1)^{k+1}, t^{k}:=1+\frac{3}{2^{k+2}}$ with $k \in \mathbb{N}_{0}$.

Verify that these choices lead to a decrease of the function f. For that, present the sequence x^{k} generated by the steepest descent method using induction with respect to k. Further determine in each case the limit $\left(\lim f\left(x^{k}\right)\right)$ and compare it to the minimum of $f(x)$. Comment on the result!

