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Exercise 4 (4 Points)
Consider the quadratic function f : Rn → R,

f(x) =
1

2
〈x,Qx〉+ 〈c, x〉+ γ

where Q ∈ Rn×n is symmetric, c ∈ Rn and γ ∈ R.

Show directly, i.e. without using any theorem from the scriptum, that the following holds:

f is convex⇔ Q is positive semidefinite.

Exercise 5
Consider the quadratic function f : Rn → R,

f(x) =
1

2
〈x,Qx〉+ 〈c, x〉+ γ

where Q ∈ Rn×n symmetric and positive definite, c ∈ Rn and γ ∈ R. Let xk ∈ Rn be
arbitrary and dk ∈ Rn a descent direction of f in xk for a k ∈ N.

Find the (exact) step size s∗ in direction dk such that the decreasing of f(xk + s∗dk) is
maximal.

Exercise 6
Consider the general descent method (as known from the lecture) for the function

f : R→ R, f(x) = x2,

with starting point x0 := 1 and the following directions dk ∈ R and step-sizes tk ∈ R:

1. dk := −1, tk :=
(

1
2

)k+2 with k ∈ N0,

2. dk := (−1)k+1, tk := 1 + 3
2k+2 with k ∈ N0.

Verify that these choices lead to a decrease of the function f . For that, present the
sequence xk generated by the steepest descent method using induction with respect to k.
Further determine in each case the limit (lim f(xk)) and compare it to the minimum of
f(x). Comment on the result!


