Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Stefan Volkwein Roberta Mancini, Stefan Trenz, Carmen Gräßle, Marco Menner, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 2

Deadline for hand-in: 2013/05/13 at lecture

Exercise 4

Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(x) = \frac{1}{2} \langle x, Qx \rangle + \langle c, x \rangle + \gamma$$

where $Q \in \mathbb{R}^{n \times n}$ is symmetric, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$.

Show directly, i.e. without using any theorem from the scriptum, that the following holds:

f is convex $\Leftrightarrow Q$ is positive semidefinite.

Exercise 5

Consider the quadratic function $f : \mathbb{R}^n \to \mathbb{R}$,

$$f(x) = \frac{1}{2} \langle x, Qx \rangle + \langle c, x \rangle + \gamma$$

where $Q \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$. Let $x^k \in \mathbb{R}^n$ be arbitrary and $d^k \in \mathbb{R}^n$ a descent direction of f in x^k for a $k \in \mathbb{N}$.

Find the (exact) step size s^* in direction d^k such that the decreasing of $f(x^k + s^*d^k)$ is maximal.

Exercise 6

Consider the general descent method (as known from the lecture) for the function

$$f: \mathbb{R} \to \mathbb{R}, \qquad f(x) = x^2$$

with starting point $x^0 := 1$ and the following directions $d^k \in \mathbb{R}$ and step-sizes $t^k \in \mathbb{R}$:

- 1. $d^k := -1, t^k := \left(\frac{1}{2}\right)^{k+2}$ with $k \in \mathbb{N}_0$,
- 2. $d^k := (-1)^{k+1}, t^k := 1 + \frac{3}{2^{k+2}}$ with $k \in \mathbb{N}_0$.

Verify that these choices lead to a decrease of the function f. For that, present the sequence x^k generated by the steepest descent method using induction with respect to k. Further determine in each case the limit $(\lim f(x^k))$ and compare it to the minimum of f(x). Comment on the result!

Sommersemester 2013

(4 Points)