Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Stefan Trenz, Carmen Gräßle, Marco Menner, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 6

Deadline for hand-in: 2013/07/08 at lecture

Exercise 16 (Preconditioning)

Consider the quadratic function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right)\binom{x}{y}+\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{x}{y}+3
$$

with the preconditioning matrices

$$
H=\operatorname{Id}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad H=\nabla^{2} f=\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right), \quad H=\left(\begin{array}{cc}
f_{x x} & 0 \\
0 & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
100 & 0 \\
0 & 2
\end{array}\right) .
$$

Use the Gradient Method you implemented for the first program sheet on \tilde{f} defined on sheet 5 , exercise 15 , to determine the number of gradient steps required for finding the minimum of f with the different preconditioning matrices H and initial value $\mathrm{x} 0=[1.5 ; 0.6]$. Hand in suitable and informative plots and comment your observations.

Hints:

1. For the computation of $H^{ \pm \frac{1}{2}}$ consider the eigenvalue and eigenvector decomposition via Matlab function eig.
2. Remember to compute and use the exact step size t in the algorithm.

Exercise 17 (Cauchy-step property)
The Cauchy step is defined as $s_{a}^{c}=-t_{a} \nabla f\left(x_{a}\right)$, where t_{a} is giving by (see the lecture notes)

$$
t_{a}= \begin{cases}\frac{\Delta_{a}}{\left\|\nabla f\left(x_{a}\right)\right\|} & \text { if } \nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right) \leq 0, \\ \min \left(\frac{\Delta_{a}}{\left\|\nabla f\left(x_{a}\right)\right\|}, \frac{\left\|\nabla f\left(x_{a}\right)\right\|^{2}}{\nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right)}\right) & \text { if } \nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right)>0 .\end{cases}
$$

Once the Cauchy point $x_{a}^{c}=x_{a}+s_{a}^{c}$ is computed, show that there is a sufficient decreasing in the quadratic model, i.e, the Cauchy step satisfies

$$
\psi_{a}(0)-\psi_{a}\left(t_{a}\right) \geq \frac{1}{2}\left\|\nabla f\left(x_{a}\right)\right\| \min \left(\Delta_{a}, \frac{\left\|\nabla f\left(x_{a}\right)\right\|}{1+\left\|H_{a}\right\|}\right) .
$$

Exercise 18 (Classical Newton method)
Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, given by

$$
f(x)=x^{3}-2 x+2, \quad \text { and } g(x)=\sin (x) .
$$

1. Show that for the starting point $x_{0}=0$, the classical Newton iteration of f has two accumulation points which are both not roots of f. Find another initial point which does not lead to a convergence of the Newton method applied on f.
2. Find a starting point x_{0} such that the Newton iteration for g tends to $+\infty$.
3. Explain why the methods do not converge to a root of the functions by a suitable plot.
