Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Carmen Gräßle, Laura Lippmann, Kevin Sieg

## Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

## Sheet 1

## Deadline for hand-in: 2014/05/07 at lecture

## Note:

- Please write each exercise on a separate sheet!
- Remember to write name, sheet number, exercise number and your group on each sheet!


## Exercise 1

Determine and identify the local critical point(s) of the Rosenbrock function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}\right)=100\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

## Exercise 2

Show that the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}\right)=8 x_{1}+12 x_{2}+x_{1}^{2}-2 x_{2}^{2}
$$

has only one stationary point, and that it is neither a maximum or minimum, but a saddle point. Sketch the contour lines of $f$ (you can also use Matlab).

## Exercise 3

(4 Points)
Consider the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}\right)=3 x_{1}^{4}-4 x_{1}^{2} x_{2}+x_{2}^{2}
$$

Prove that $\tilde{x}=(0,0)$ is a critical point of $f$. Show further, that a restriction of $f$ on any line ${ }^{1}$ through $\tilde{x}$, has a strict local minimum in $\tilde{x}$. Is $\tilde{x}$ a local minimizer of $f$ ?

[^0]
[^0]:    ${ }^{1}$ The restriction of $f$ on the line $\gamma$ is defined as $g(t)=f(\gamma(t)), t \in[0,1]$, with $\gamma(t):=\tilde{x}+t d$, where $d \in \mathbb{R}^{2} \backslash\{0\}$ is an arbitrary but fixed direction.

