Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Carmen Gräßle, Laura Lippmann, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 4

Deadline for hand-in: 2014/06/18 at lecture

Optimization with boundary constraints.

So far we looked for (local) minimizer $x^{*} \in \mathbb{R}^{n}$ of a sufficiently smooth and real valued function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in an open set $\Omega \subseteq \mathbb{R}^{n}$:

$$
x^{*}=\underset{x \in \Omega}{\operatorname{argmin}} f(x) .
$$

By differential calculus, we immediately received as a first order necessary condition:

$$
f\left(x^{*}\right) \leq f(x) \text { for all } x \in B_{\epsilon}\left(x^{*}\right) \quad \Longrightarrow \quad \forall x \in \Omega:\left\langle\nabla f\left(x^{*}\right), x\right\rangle=0
$$

If Ω is closed, e.g.,

$$
\Omega=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]=\left\{x \in \mathbb{R}^{n} \mid \forall i=1, \ldots, n: a_{i} \leq x_{i} \leq b_{i}, a_{i}, b_{i} \in \mathbb{R}\right\}
$$

the situation turns out to be slightly more complicated: if a (local) minimizer is located on the boundary, the gradient condition is not longer a necessary criterion. We will focus on that in the next exercise.

Exercise 12

Let $f: \Omega \rightarrow \mathbb{R}, f \in \mathcal{C}^{0}(\bar{\Omega}) \cap \mathcal{C}^{1}\left(\Omega^{\circ}\right), \nabla f$ continuously expandable on $\bar{\Omega}$ and Ω as defined above. Further, let $x^{*} \in \Omega$ be a local minimizer of f, i.e.

$$
\exists \epsilon>0: \forall x \in B_{\epsilon}\left(x^{*}\right) \cap \Omega: \quad f\left(x^{*}\right) \leq f(x)
$$

Show that the following modified first order condition holds:

$$
\forall x \in \Omega:\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0
$$

Any x^{*} that fulfills this condition is called stationary point of f.

Exercise 13

For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ let L be the Lipschitz constant of the gradient ∇f. The canonical projection of $x \in \mathbb{R}^{n}$ on the closed set $\Omega=\prod_{i=1}^{n}\left[a_{i}, b_{i}\right]$ is given by $P: \mathbb{R}^{n} \rightarrow \Omega$,

$$
(P(x))_{i}:= \begin{cases}a_{i} & \text { if } x_{i} \leq a_{i} \\ x_{i} & \text { if } x_{i} \in\left(a_{i}, b_{i}\right) \\ b_{i} & \text { if } x_{i} \geq b_{i}\end{cases}
$$

Further we define

$$
x(\lambda):=P(x-\lambda \nabla f(x)) .
$$

Prove that the following modified Armijo condition holds for all $\lambda \in\left(0, \frac{2(1-\alpha)}{L}\right]$:

$$
f(x(\lambda))-f(x) \leq-\frac{\alpha}{\lambda}\|x-x(\lambda)\|_{\mathbb{R}^{n}}^{2}
$$

Hints: The following ansatz with the fundamental theorem of calculus may be helpful:

$$
f(x(\lambda))-f(x)=\int_{0}^{1} \frac{\mathrm{~d}}{\mathrm{~d} t} f(x-t(x-x(\lambda))) \mathrm{d} t
$$

You can use the following formula without proof:

$$
\forall x, y \in \Omega:\langle y-x(\lambda), x(\lambda)-x+\lambda \nabla f(x)\rangle \geq 0
$$

Exercise 14

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ convex and differentiable and $C \subseteq \mathbb{R}^{n}$ a closed and non-empty convex set. Show in the following order that:

1. $x^{*} \in C$ minimizes f over $C \Leftrightarrow\left\langle\nabla f\left(x^{*}\right), c-x^{*}\right\rangle \geq 0 \forall c \in C$.

Hint: it might be helpful to use (without proof) that, for a convex function f, it holds that $f(b) \geq f(a)+\langle\nabla f(a), b-a\rangle, a, b \in C$.
2. $\langle c-P(x), P(x)-x\rangle \geq 0 \forall c \in C$ and $x \in \mathbb{R}^{n}$ considering that one can determine the projection $P(x)$ of x in C solving the minimization problem

$$
\min _{c \in C} f(c)=\min _{c \in C} \frac{1}{2}\|c-x\|^{2}
$$

3. $x^{*} \in C$ minimizes f over $C \quad \Leftrightarrow \quad x^{*}=P\left(x^{*}-\gamma \nabla f\left(x^{*}\right)\right)$

Hint: it might be helpful to use (without proof) that $\langle x-P(x-\gamma \nabla f(x)), P(x-\gamma \nabla f(x))-x+$ $\gamma \nabla f(x)\rangle \geq 0$, with $\gamma \in \mathbb{R}^{+}$.

