Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Carmen Gräßle, Laura Lippmann, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 5

Deadline for hand-in: 2014/07/02 at lecture

Exercise 15 (Classical Newton method)
Consider the functions $f, g: \mathbb{R} \rightarrow \mathbb{R}$, given by

$$
f(x)=x^{3}-2 x+2, \quad \text { and } \quad g(x)=\sin (x)
$$

1. Show that for the starting point $x_{0}=0$, the classical Newton iteration of f has two accumulation points which are both not roots of f. Find another initial point which does not lead to a convergence of the Newton method applied on f.
2. Find a starting point x_{0} such that the Newton iteration for g tends to $+\infty$.
3. Explain why the methods do not converge to a root of the functions by a suitable plot.

Exercise 16 (Damped Newton)

Consider to use the classical Newton method for finding the root of $g(x)=\arctan (x)$. Let us be at a generic step ν of the algorithm and that $x_{k}=5$. Determine the next iteration point x_{k+1} according to the Newton algorithm

$$
\begin{aligned}
g^{\prime}\left(x_{k}\right) \Delta x_{k} & =-g\left(x_{k}\right) ; \\
x_{k+1} & =x_{k}+\Delta x_{k} .
\end{aligned}
$$

Then, let us modify the previous algorithm in the following manner (damped Newton algorithm)

$$
\begin{aligned}
g^{\prime}\left(x_{k}\right) \Delta x_{k} & =-g\left(x_{k}\right) \\
x_{k+1} & =x_{k}+\alpha_{k} \Delta x_{k},
\end{aligned}
$$

with $\alpha_{k} \in(0,1)$, computed by a line search procedure wich returns an α_{k} such that

$$
\left\|g\left(x_{k}+\alpha_{k} \Delta x_{k}\right)\right\| \leq\left(1-\delta \alpha_{k}\right)\left\|g\left(x_{k}\right)\right\| .
$$

Using $\delta=0.5$ and starting from $\alpha=1$ in the line search procedure and dividing it by 2 every time the condition is not satisfied, show what the next point x_{k+1} would be using the damped Newton algorithm and compare it to the one returned by the standard Newton method. (Hint: note that the root of $g(x)$ is $x=0$.)

Exercise 17

Let $f \in \mathcal{C}^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be a quadratic function of the form

$$
f(x)=\frac{1}{2}\langle x, Q x\rangle+\langle c, x\rangle+\gamma
$$

$Q \in \mathbb{R}^{n \times n}$ symmetric and positive definite, $c \in \mathbb{R}^{n}$ and $\gamma \in \mathbb{R}$. Let $x_{0} \in \mathbb{R}^{n}$ and H be a symmetric, positive definite matrix.
Define $\tilde{f}(x):=f\left(H^{-\frac{1}{2}} x\right)$ and $\tilde{x}_{0}=H^{\frac{1}{2}} x_{0}$. Let $\left(\tilde{x}_{k}\right)_{k \in \mathbb{N}}$ be a sequence generated by the steepest descent method,

$$
\tilde{x}_{k+1}=\tilde{x}_{k}+\tilde{t}_{k} \tilde{d}_{k} \text { with } \tilde{d}_{k}=-\nabla \tilde{f}\left(\tilde{x}_{k}\right)
$$

and $\tilde{t}_{k}=t\left(\tilde{d}_{k}\right)$ the optimal stepsize choice as determined in Exercise 5.
Let $\left(x_{k}\right)_{k \in \mathbb{N}}$ be generated by the gradient-like method with preconditioner H,

$$
x_{k+1}=x_{k}+t_{k} d_{k} \quad \text { with } d_{k}=H^{-1}\left(-\nabla f\left(x_{k}\right)\right)
$$

and $t_{k}=t\left(d_{k}\right)$ the optimal stepsize choice as determined in Exercise 5.
Show (by induction) that the two optimization methods are equivalent, i.e., for all $k \in \mathbb{N}$ it holds:

$$
x_{k}=H^{-\frac{1}{2}} \tilde{x}_{k} .
$$

