Universität Konstanz

Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Carmen Gräßle, Laura Lippmann, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Sheet 6

Deadline for hand-in: 2014/07/16 at lecture

Exercise 18 (Scaled gradient method)
Consider the quadratic function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y)=\left(\begin{array}{ll}
x & y
\end{array}\right)\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right)\binom{x}{y}+\left(\begin{array}{ll}
1 & 1
\end{array}\right)\binom{x}{y}+3
$$

and use a modified version of the Gradient Method where the update is

$$
x^{k+1}=x^{k}-t^{k} M^{-1} \nabla f\left(x^{k}\right)
$$

with t^{k} exact stepsize and M one of the following matrices

$$
M=\operatorname{Id}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad M=\nabla^{2} f=\left(\begin{array}{cc}
100 & -1 \\
-1 & 2
\end{array}\right), \quad M=\left(\begin{array}{cc}
f_{x x} & 0 \\
0 & f_{y y}
\end{array}\right)=\left(\begin{array}{cc}
100 & 0 \\
0 & 2
\end{array}\right) .
$$

Use as basis the Gradient Method you implemented for the first program sheet to determine the number of gradient steps required for finding the minimum of f with the different matrices M and initial value $\mathrm{x} 0=[1.5 ; 0.6]$. Hand in suitable and informative plots and comment your observations (you don't need to hand in the code!).

Exercise 19 (Cauchy-step property)
The Cauchy step is defined as $s_{a}^{c}=-t_{a} \nabla f\left(x_{a}\right)$, where t_{a} is giving by (see the lecture notes)

$$
t_{a}= \begin{cases}\frac{\Delta_{a}}{\left\|\nabla f\left(x_{a}\right)\right\|} & \text { if } \nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right) \leq 0, \\ \min \left(\frac{\Delta_{a}}{\left\|\nabla f\left(x_{a}\right)\right\|}, \frac{\left\|\nabla f\left(x_{a}\right)\right\|^{2}}{\nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right)}\right) & \text { if } \nabla f\left(x_{a}\right)^{\top} H_{a} \nabla f\left(x_{a}\right)>0 .\end{cases}
$$

Once the Cauchy point $x_{a}^{c}=x_{a}+s_{a}^{c}$ is computed, show that there is a sufficient decreasing in the quadratic model, i.e, the Cauchy step satisfies

$$
\psi_{a}(0)-\psi_{a}\left(t_{a}\right) \geq \frac{1}{2}\left\|\nabla f\left(x_{a}\right)\right\| \min \left(\Delta_{a}, \frac{\left\|\nabla f\left(x_{a}\right)\right\|}{1+\left\|H_{a}\right\|}\right) .
$$

Exercise 20 (Dogleg strategy)
Let us consider the quadratic model of the function f at iteration k in x_{k}

$$
m_{k}(x)=f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{\top}\left(x-x_{k}\right)+\frac{1}{2}\left(x-x_{k}\right)^{\top} B_{k}\left(x-x_{k}\right),
$$

with B_{k} positive definite (Hessian matrix in x_{k} or an approximation of that). The trustregion subproblem gives back $x(\Delta)$ as

$$
x(\Delta)=\underset{\left\|x-x_{k}\right\|<\Delta}{\arg \min } m_{k}(x) .
$$

If the trust region is big enough i.e, as if there is no constraint in the TR-subproblem, the solution $x(\Delta)$ would be the minimizer or $m_{k}(x)$: one would get the (quasi)Newton solution

$$
x^{Q N}=x_{k}-B_{k}^{-1} \nabla f\left(x_{k}\right) .
$$

When, instead, Δ is too small, the quadratic contribution is small and one tends to get a solution in the form given by the Cauchy point formula,

$$
x^{C P}=x_{k}-\Delta \frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|} \quad \text { or } \quad x^{C P}=x_{k}-\frac{\left\|\nabla f\left(x_{k}\right)\right\|^{2}}{\nabla f\left(x_{k}\right)^{\top} B_{k} \nabla f\left(x_{k}\right)} \nabla f\left(x_{k}\right) .
$$

Hence, for all the others $\Delta, x(\Delta)$ will describe a curve in between the points $x^{C P}$ and $x^{Q N}$.
The idea of the dogleg method is to find an approximated solution replacing the curve just described with a path consisting of two straight lines: one from the current point x_{k} to the Cauchy-point $x^{C P}$ and the other one from $x^{C P}$ to the (quasi)Newton solution $x^{Q N}$. The path is then described as

$$
x(\tau)= \begin{cases}x_{k}+\tau\left(x^{C P}-x_{k}\right) & \tau \in[0,1] \\ x^{C P}+(\tau-1)\left(x^{Q N}-x^{C P}\right) & \tau \in[1,2]\end{cases}
$$

Show that $m(x(\tau))$ is a decreasing function of τ.
Hint: consider m on the two straight lines separately.

