Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Carmen Gräßle, Laura Lippmann, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Program 2

Submission by E-Mail: 2014/06/18, 10:00 h

Implementation of the Projected Gradient Method.

Part 1: Generate a file projection.m and implement the function

$$
\text { function }[p x]=\operatorname{projection(x,~a,~b)~}
$$

with the current point $\mathrm{x} \in \mathbb{R}^{n}$, lower bound $\mathrm{a} \in \mathbb{R}^{n}$ and upper bound $\mathrm{b} \in \mathbb{R}^{n}$ as input arguments. The function returns the (pointwise) projected point $\mathrm{px} \in \mathbb{R}^{n}$ according to the projection

$$
P: \mathbb{R}^{n} \rightarrow \Omega:=\left\{x \in \mathbb{R}^{n} \mid \forall i=1, \ldots, n: a_{i} \leq x_{i} \leq b_{i}\right\}
$$

Test your function for the rectangular 2-D domain defined by the lower bound (lower left corner) $a=(-1 ;-1)$ and the upper bound (upper right corner) $b=(1 ; 1)$: compute the projection $P(x)$ of points $x=y+t d \in \mathbb{R}^{2}$ with $y \in \mathbb{R}^{2}$ as given in the table below, direction $d=(1.5 ; 1.5) \in \mathbb{R}^{2}$, step sizes $t=0$ and $t=1$. For validation compare your results to the projections given in the table:

Points $y:$	$P(x)$ for $t=0$	$P(x)$ for $t=1$
$(-2 ;-2)$	$(-1 ;-1)$	$(-0.5 ;-0.5)$
$(-1 ;-1)$	$(-1 ;-1)$	$(0.5 ; 0.5)$
$(-0.5 ; 0.5)$	$(-0.5 ; 0.5)$	$(1 ; 1)$
$(2 ; 0.5)$	$(1 ; 0.5)$	$(1 ; 1)$
$(1 ;-0.5)$	$(1 ;-0.5)$	$(1 ; 1)$

Table 1: Testing points and their projections with respect to t

Part 2: Write a function

```
function [t] = modarmijo(fhandle, x, d, t0, alpha, beta, a, b)
```

for the Armijo step size strategy with the modified termination condition

$$
f(x(t, d))-f(x) \leq-\frac{\alpha}{t}\|x-x(t, d)\|^{2}
$$

with current point x, descent direction d, initial step size t0, alpha and beta for the Armijo rule and a and b for the projection rule and $x(t, d)$ defined as

$$
x(t, d):=P(x-t d)
$$

Part 3: Implement the gradient projection algorithm with direction $d_{k}:=-\frac{\nabla f\left(x_{k}\right)}{\left\|\nabla f\left(x_{k}\right)\right\|}$. Generate a file gradproj.m for the function
function $[\mathrm{X}]=$ gradproj(fhandle, x 0 , epsilon, $\mathrm{nmax}, \mathrm{t} 0$, alpha, beta, a, b)
with initial point x 0 , parameter epsilon for the termination condition $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$ and the additional termination condition $\|x-x(1)\|<\epsilon$, nmax for the maximal number of iteration steps, parameters t0, alpha and beta for the Armijo rule and a and b for the projection rule. Modify therefore the gradient method gradmethod.m.

The program should return a matrix $\mathrm{X}=[\mathrm{x} 0 ; \mathrm{x} 1 ; \mathrm{x} 2 ; \ldots]$ containing the whole iterations.

Part 4: Call the function gradproj from a main file main.m to test your program for the Rosenbrock function

$$
\text { function }[f, g]=\text { rosenbrock(x) }
$$

with input argument $x \in \mathbb{R}^{2}$ and output arguments the corresponding function value f $\in \mathbb{R}$ and gradient $g \in \mathbb{R}^{2}$. Use the following parameters: visualize the results in suitable plots and write your observations in the written report:
epsilon=1.0e-2, N=1.5e+3, t0=1, alpha=1.0e-2, beta=0.5 and

1. $\mathrm{x} 0=[1 ;-0.5], \mathrm{a}=[-1 ;-1]$ and $\mathrm{b}=[2 ; 2]$
2. $\mathrm{x} 0=[-1 ;-0.5], \mathrm{a}=[-2 ;-2]$ and $\mathrm{b}=[2 ; 0]$
3. $\mathrm{x} 0=[-2 ; 2], \mathrm{a}=[-2 ;-2]$ and $\mathrm{b}=[2 ; 2]$
