Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Stefan Volkwein
Roberta Mancini, Carmen Gräßle, Laura Lippmann, Kevin Sieg

Optimierung

http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/

Program 3 (6 Points)

Submission by E-Mail: 2014/07/16, 10:00 h

Implementation of (Quasi-)Newton method.

Part 1: Implement the (Quasi-)Newton algorithm

```
X = newtonmethod(fhandle, x0, epsilon, t0, alpha, beta, Nmax, amax)
```

according to the algorithm: with initial point x 0 , tolerance epsilon for the termination

```
Algorithm 1 Newton Method
Require: \(f: \mathbb{R}^{n} \rightarrow \mathbb{R}\), initial guess \(x\), stopping tolerance \(\varepsilon>0\), maximal iteration
    number \(N_{\max }\), maximal iteration number for Armijo \(a_{\max }\);
    \(k=1\);
    Compute the initial Hessian (exact or \(H_{k}=I\) )
    while tol \(>\varepsilon\) and \(n<N_{\text {max }}\) do
        Compute a descent direction \(d^{k}\) solving \(H_{k} d_{k}=-\nabla f\left(x_{k}\right)\);
        Compute a stepsize \(t_{k}\) using Armijo rule (see Program 1);
        Set \(x^{k+1}=x^{k}+t_{k} d^{k}\);
        Set \(k=k+1\);
        Update the Hessian \(H_{k}\)
    end while
```

condition $\left\|\nabla f\left(x_{k}\right)\right\|<\epsilon$, and parameters t0, alpha and beta for the Armijo rule and Nmax and amax maximum amount of iterations in the loop and Armijo loop.

The program should return a matrix $X=[x 0 ; x 1 ; x 2 ; \ldots]$ containing the iteration history.

Please note: The newtonmethod function must accept only one function handle, which provides the needed values! The function should automatically recognize if the Hessian matrix is provided by the functional handle (i.e., no additional parameters or flags should be added in the input parameters of the newtonmethod function).

Hint: Use the Matlab function nargout to identify if the Hessian is provided by the function.

Part 2: Test your program using two versions of the known Rosenbrock.m function (see Program 1 and 2).

1. The first one has to return the Rosenbrock function value and its gradient computed in x :
function [f, gradf] = rosenbrock1(x);
2. The second one has to return in addition the Hessian matrix computed in x :
function [f, gradf, hessf] = rosenbrock2(x).

In the first case, the newtonmethod should recognize that the information on the Hessian is missing, so it must provide an approximation of it using BFGS method. The update of the Hessian replacement must be given according to the code in Algorithm 2.
Use the same parameters setting provided in Program 1 but with $N=1000$, using as start-

```
Algorithm 2 BFGS Update
Require: \(H, y, s\);
    if \(y^{\top} s>0\) then
        Update \(H=H+\frac{y y^{\top}}{y^{\top} s}-\frac{H s(H s)^{\top}}{s^{\top} H s}\)
    else
        Reset \(H=I\)
    end if
```

ing points $[1 ;-0.5]$ and, then, $[-1.5,-1]$. Explain the results you get and use suitable plots for showing X .

